期刊文献+
共找到1,870篇文章
< 1 2 94 >
每页显示 20 50 100
Mathematical modeling and simulations of stress mitigation by coating polycrystalline particles in lithium-ion batteries 被引量:1
1
作者 N.IQBAL J.CHOI +2 位作者 S.F.SHAH C.LEE S.LEE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期947-962,共16页
A chemo-mechanical model is developed to investigate the effects on the stress development of the coating of polycrystalline Ni-rich LiNixMnyCo_(z)O_(2)(x≥0.8)(NMC)particles with poly(3,4-ethylenedioxythiophene)(PEDO... A chemo-mechanical model is developed to investigate the effects on the stress development of the coating of polycrystalline Ni-rich LiNixMnyCo_(z)O_(2)(x≥0.8)(NMC)particles with poly(3,4-ethylenedioxythiophene)(PEDOT).The simulation results show that the coating of primary NMC particles significantly reduces the stress generation by efficiently accommodating the volume change associated with the lithium diffusion,and the coating layer plays roles both as a cushion against the volume change and a channel for the lithium transport,promoting the lithium distribution across the secondary particles more homogeneously.Besides,the lower stiffness,higher ionic conductivity,and larger thickness of the coating layer improve the stress mitigation.This paper provides a mathematical framework for calculating the chemo-mechanical responses of anisotropic electrode materials and fundamental insights into how the coating of NMC active particles mitigates stress levels. 展开更多
关键词 lithium-ion battery(LIB) polycrystalline particle COATING finite element simulation Ni-rich LiNixMnyCo_(z)O_(2)(x>0.8)(NMC)
下载PDF
Quantitative analysis of laser-generated ultrasonic wave characteristics and their correlation with grain size in polycrystalline materials
2
作者 徐兆文 白雪 +2 位作者 马健 万壮壮 王超群 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期526-543,共18页
Quantitative relationship between nanosecond pulsed laser parameters and the characteristics of laser-generated ultrasonic waves in polycrystalline materials was evaluated.The high energy of the pulsed laser with a la... Quantitative relationship between nanosecond pulsed laser parameters and the characteristics of laser-generated ultrasonic waves in polycrystalline materials was evaluated.The high energy of the pulsed laser with a large irradiation spot simultaneously generated ultrasonic longitudinal and shear waves at the epicenter under the slight ablation regime.An optimized denoising technique based on wavelet thresholding and variational mode decomposition was applied to reduce noise in shear waves with a low signal-to-noise ratio.An approach for characterizing grain size was proposed using spectral central frequency ratio(SCFR)based on time-frequency analysis.The results demonstrate that the generation regime of ultrasonic waves is not solely determined by the laser power density;even at high power densities,a high energy with a large spot can generate an ultrasonic waveform dominated by the thermoelastic effect.This is ascribed to the intensification of the thermoelastic effect with the proportional increase in laser irradiation spot area for a given laser power density.Furthermore,both longitudinal and shear wave SCFRs are linearly related to grain size in polycrystalline materials;however,the shear wave SCFR is more sensitive to finer-grained materials.This study holds great significance for evaluating metal material properties using laser ultrasound. 展开更多
关键词 laser-ultrasonics polycrystalline materials ultrasonic time-frequency characteristics grain size
下载PDF
Polycrystalline ZSM-5 Aggregates Induced by Seed and Catalytic Performance in Methanol to Hydrocarbon
3
作者 WANG Xuchang JIAO Chuyu +5 位作者 JI Zhuo JIAO Qirui QIN Bo DU Yanze ZHENG Jiajun LI Ruifeng 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第8期945-954,I0010-I0013,共14页
Synthesis of ZSM-5 zeolite typically utilizes small molecule polyamines or quaternary ammonium salts as organic structure guiding agent(OSDA).By contrast,the OSDA-free hydrothermal synthesis system eliminates the use ... Synthesis of ZSM-5 zeolite typically utilizes small molecule polyamines or quaternary ammonium salts as organic structure guiding agent(OSDA).By contrast,the OSDA-free hydrothermal synthesis system eliminates the use of organic templates and the subsequent calcination procedure.This not only reduces the cost of synthesis,but also prevents environmental pollution from the combustion of organic templates,representing an eco-friendly approach.Despite this,literature suggests that even so-called template-free synthesis systems often involve trace amount of organic substances like alcohol.In the present work,a calcined commercial ZSM-5 zeolite was served as seed,with sodium aluminate as aluminum source and silica sol as silicon source,ensuring an entirely template-free synthesis system.Polycrystalline ZSM-5 aggregates consisted of rod-like nanocrystals were successfully prepared in the completely OSDA-free system.Effects of the Si/Al ratio in ZSM-5 seed,dosage and crystallization conditions such as crystallization temperature and crystallization time on ZSM-5 synthesis were investigated.The results show that a highly crystallinity ZSM-5 aggregate consisting of primary nano-sized crystals less than 100 nm is produced from a gel precursor with 5.6%(in mass)seed after hydrothermal treatment for 48 h.Furthermore,the Si/Al ratio in ZSM-5 seed has little effect on the topological structure and pore structure of the synthesized samples.However,the seeds with a low Si/Al ratio facilitate faster crystallization of zeolite and enhance the acidity,especially the strong acid centers,of the catalyst.The catalytic performance of the synthesized polycrystalline ZSM-5 was evaluated during dehydration of methanol and compared with a commercial reference ZSM-5r.The results exhibit that as compared with the reference catalyst,the fabricated sample has a longer catalytic lifetime(16 h vs 8 h)attributed to its hierarchical pores derived from the loosely packed primary nanoparticles.Additionally,the prepared polycrystalline catalyst also exhibits a higher aromatics selectivity(28.1%-29.8%vs 26.5%). 展开更多
关键词 ZSM-5 polycrystalline aggregate crystal seed structure guiding agent
下载PDF
Direct observation of shock-induced phase transformation in polycrystalline iron via in situ x-ray diffraction
4
作者 Fan Zhang Jia-Qin Dong +11 位作者 Zhi-Yong Xie Zhi-Yu He Hua Shu Rui-Rong Wang Jun Xiong Guo Jia Zhi-Heng Fang Wei Wang Da-Wu Xiao An-Le Lei Jie Chen Xiu-Guang Huang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期337-342,共6页
Phase transition of polycrystalline iron compressed along the Hugoniot is studied by combining laser-driven shock with in situ x-ray diffraction technique.It is suggested that polycrystalline iron changes from an init... Phase transition of polycrystalline iron compressed along the Hugoniot is studied by combining laser-driven shock with in situ x-ray diffraction technique.It is suggested that polycrystalline iron changes from an initial body-centered cubic structure to a hexagonal close-packed structure with increasing pressure(i.e.,a phase transition fromαtoε).The relationship between density and pressure for polycrystalline iron obtained from the present experiments is found to be in good agreement with the gas-gun Hugoniot data.Our results show that experiments with samples at lower temperatures under static loading,such as in a diamond anvil cell,lead to higher densities measured than those found under dynamic loading.This means that extrapolating results of static experiments may not predict the dynamic responses of materials accurately.In addition,neither the face-centered cubic structure seen in previous molecular-dynamics simulations or twophase coexistence are found within our experimental pressure range. 展开更多
关键词 in situ x-ray diffraction phase transition polycrystalline iron
下载PDF
A theoretical and deep learning hybrid model for predicting surface roughness of diamond-turned polycrystalline materials 被引量:2
5
作者 Chunlei He Jiwang Yan +3 位作者 Shuqi Wang Shuo Zhang Guang Chen Chengzu Ren 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期620-644,共25页
Polycrystalline materials are extensively employed in industry.Its surface roughness significantly affects the working performance.Material defects,particularly grain boundaries,have a great impact on the achieved sur... Polycrystalline materials are extensively employed in industry.Its surface roughness significantly affects the working performance.Material defects,particularly grain boundaries,have a great impact on the achieved surface roughness of polycrystalline materials.However,it is difficult to establish a purely theoretical model for surface roughness with consideration of the grain boundary effect using conventional analytical methods.In this work,a theoretical and deep learning hybrid model for predicting the surface roughness of diamond-turned polycrystalline materials is proposed.The kinematic–dynamic roughness component in relation to the tool profile duplication effect,work material plastic side flow,relative vibration between the diamond tool and workpiece,etc,is theoretically calculated.The material-defect roughness component is modeled with a cascade forward neural network.In the neural network,the ratio of maximum undeformed chip thickness to cutting edge radius RT S,work material properties(misorientation angle θ_(g) and grain size d_(g)),and spindle rotation speed n s are configured as input variables.The material-defect roughness component is set as the output variable.To validate the developed model,polycrystalline copper with a gradient distribution of grains prepared by friction stir processing is machined with various processing parameters and different diamond tools.Compared with the previously developed model,obvious improvement in the prediction accuracy is observed with this hybrid prediction model.Based on this model,the influences of different factors on the surface roughness of polycrystalline materials are discussed.The influencing mechanism of the misorientation angle and grain size is quantitatively analyzed.Two fracture modes,including transcrystalline and intercrystalline fractures at different RTS values,are observed.Meanwhile,optimal processing parameters are obtained with a simulated annealing algorithm.Cutting experiments are performed with the optimal parameters,and a flat surface finish with Sa 1.314 nm is finally achieved.The developed model and corresponding new findings in this work are beneficial for accurately predicting the surface roughness of polycrystalline materials and understanding the impacting mechanism of material defects in diamond turning. 展开更多
关键词 diamond turning material-defect roughness component polycrystalline copper neural network simulated annealing algorithm
下载PDF
Effect of Thermal Annealing on Characteristics of Polycrystalline Silicon 被引量:1
6
作者 任丙彦 勾宪芳 +3 位作者 马丽芬 励旭东 许颖 王文静 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2005年第12期2294-2297,共4页
Oxygen and carbon behaviors and minority-carrier lifetimes in multi-crystalline silicon (mc-Si) used for solar cells are investigated by FTIR and QSSPCD before and after annealing at 750~ 1150℃ in N2 and O2 ambien... Oxygen and carbon behaviors and minority-carrier lifetimes in multi-crystalline silicon (mc-Si) used for solar cells are investigated by FTIR and QSSPCD before and after annealing at 750~ 1150℃ in N2 and O2 ambient. For comparison, the annealing of CZ silicon with nearly the same oxygen and carbon concentrations is also carried out under the same conditions. The results reveal that the oxygen and carbon concentrations of mc-Si and CZ-Si have a lesser decrease,which means oxygen precipitates are not generated,and grain boundaries in mc-Si do not affect carbon behavior. Bulk lifetime of mc-Si increases in N2 and O2 ambient at 850,950,and 1150℃ ,and the lifetime of mc-Si wafers annealed in 02 are higher than those annealed in N2, which shows that a lot of impurities in mc-Si at high temperature annealing diffuse to grain boundaries,greatly reducing recombination centers. Interstitial Si atoms filling vacancies or recombination centers increases lifetime. 展开更多
关键词 polycrystalline silicon OXYGEN LIFETIME
下载PDF
Hydrogenation of Polycrystalline SiGe Thin Films by Hot Wire Technique
7
作者 张建军 胡增鑫 +2 位作者 谷士斌 赵颖 耿新华 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2007年第3期317-322,共6页
An optimized condition for defect passivation by the hot-wire technique was established. Effects of hydrogenation for polycrystalline SiGe (poly-Si1-xGex ) thin films were estimated by investigating the dark conduct... An optimized condition for defect passivation by the hot-wire technique was established. Effects of hydrogenation for polycrystalline SiGe (poly-Si1-xGex ) thin films were estimated by investigating the dark conductivity and activation energy that derive from the conductivity as a function of the temperature. The results show that this technique can effectively reduce defects present in poly-Si1-xGex films. By optimizing the substrate and filament temperatures,the treatment can be accomplished in a short time of 20-30min, which is considerably shorter than other hydrogenation techniques. 展开更多
关键词 HOT-WIRE HYDROGENATION polycrystalline SiGe
下载PDF
New Vitrified Bond Diamond Grinding Wheel for Grinding the Cylinder of Polycrystalline Diamond Compacts 被引量:7
8
作者 Xiaofu ZHANG Anxian LU Yu WANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第5期672-676,共5页
In this work, a kind of new vitrified bond based on Li2O-Al2O3-SiO2 glass ceramics was used to bond the diamond grains, which is made into grinding wheel and the cylindrical grinding process of polycrystalline diamond... In this work, a kind of new vitrified bond based on Li2O-Al2O3-SiO2 glass ceramics was used to bond the diamond grains, which is made into grinding wheel and the cylindrical grinding process of polycrystalline diamond compacts (PDCs) by using the new vitrified bond diamond grinding wheel was discussed. Several factors which influence the properties of grinding wheel such as amount of vitrified bond and the kinds and amount of stuff in grinding wheel were also investigated. It was found that the new vitrified bond can firmly combine diamond grains, when there are only diamonds and vitrified bond in the structure of grinding wheel, the longevity of the grinding wheel is about 2.5-3 times as that of resin bond grinding wheel for processing PDCs. The grinding size precision of PDCs can be improved from 4-0.03 mm to 4-0.01 mm because of larger Young's modulus of vitrified bond than resin bond. The grinding time of a PDC product can be 1.75-2.0 min from 3.25-3.5 min, so this kind of grinding wheel can save much time for processing PDCs. Also, there is hardly noise when using this new vitrified bond diamond grinding wheel to process PDCs. The amount of vitrified bond in grinding wheel influences the longevity of grinding wheel. When the size of diamond grains is 90-107 μm, the optimal amount of vitrified bond in grinding wheel is 21% (wt pct). When the amount of vitrified bond exceeds 21%, there are many pores in grinding block, which will decrease the longevity of grinding wheel. The existence of addition stuff such as Al2O3 or SiC can reduce the longevity of grinding wheel. 展开更多
关键词 polycrystalline diamond compact (PDC) Vitrified bond Diamond grinding wheel
下载PDF
EFFECT OF MICROSTRUCTURE ON THE HARDENING AND SOFTENING BEHAVIORS OF POLYCRYSTALLINE SHAPE MEMORY ALLOYS PART Ⅰ:MICROMECHANICS CONSTITUTIVE MODELING 被引量:5
9
作者 宋固全 孙庆平 黄克智 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2000年第4期309-324,共16页
The effects of microstructure and its evolution on the macroscopic superelastic stress-strain response of polycrystalline Shape Memory Alloy(SMA)are studied by a microstructure-based constitutive model developed in th... The effects of microstructure and its evolution on the macroscopic superelastic stress-strain response of polycrystalline Shape Memory Alloy(SMA)are studied by a microstructure-based constitutive model developed in this paper.The model is established on the following basis:(1)the transformation conditions of the unconstrained single crystal SMA microdomain(to be distinguished from the bulk single crystal),which serve as the local criterion for the derivation of overall transfor- mation yield conditions of the polycrystal;(2)the micro-to macro-transition scheme by which the connection between the polycrystal aggregates and the single crystal microdomain is established and the macroscopic transformation conditions of the polycrystal SMA are derived;(3)the quantitative incorporation of three microstruc- ture factors(i.e.,nucleation,growth and orientation distribution of martensite)into the modeling.These microstructural factors are intrinsic of specific polycrystal SMA systems and the role of each factor in the macroscopic constitutive response is quan- titatively modeled.It is demonstrated that the interplay of these factors will result in different macroscopic transformation kinematics and kinetics which are responsible for the observed macroscopic stress-strain hardening or softening response,the latter will lead to the localization and propagation of transformation bands in TiNi SMA. 展开更多
关键词 phase transformation MICROSTRUCTURE hardening and softening polycrystalline material shape memory alloys
下载PDF
MACRO SLIP THEORY OF PLASTICITY FOR POLYCRYSTALLINE SOLIDS 被引量:3
10
作者 王自强 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1991年第4期323-334,共12页
A macro slip theory is presented in this paper.Four independent slip systems are proposed for polycrystalline solids.Each slip system consists of a slip plane which lies on a face of the octahedron in stress space and... A macro slip theory is presented in this paper.Four independent slip systems are proposed for polycrystalline solids.Each slip system consists of a slip plane which lies on a face of the octahedron in stress space and a slip direction which is coincident with shear stress acting on the same face of the octahedron.It is proved that for proportional loading,present results are identical with the classical flow theory of plasticity. For nonproportional loading,the macro slip theory shows good predicting ability.The calculated results are in good agreement with the experimental data. 展开更多
关键词 macro slip theory PLASTICITY polycrystalline solids
下载PDF
Experimental research on the residual stress of polycrystalline diamond compacts for oil drilling 被引量:3
11
作者 Xu Gen~1 Xu Guoping~2 Chen Feng~3 Ma Chunde~3 (1.School of Resources and Safety Engineering,Central South University,Changsha 410083,China) (2.King-ray New Materials Science & Technology Co,Ltd,Changsha 410012,China) (3.Testing Center,Central South University,Changsha 410083,China) 《金刚石与磨料磨具工程》 CAS 北大核心 2008年第S1期92-96,共5页
Practical experiences gained in the past several years show that the thermal residual stress(TRS) is a main cause leading polycrystalline diamond compacts(PDC) to premature failure.It is the very important to measure ... Practical experiences gained in the past several years show that the thermal residual stress(TRS) is a main cause leading polycrystalline diamond compacts(PDC) to premature failure.It is the very important to measure the TRS accurately for optimizing the interface and improving the service performance of PDC.In this paper,the TRS in 1913 flat-interface PDC was measured using improved stress-release method(ISRM). The TRS on the surface of polycrystalline diamond(PCD) table was obtained,which can be used to calculate the radial thermal residual stress(RTRS) at the interface of PCD table via a refutation process.The obtained results show that there are compressive residual stress at the PCD table interface and in the most region of PCD table surface.The exception occurs near the outer diameter of the PCD table,where the PDC begins to bend and put the PCD table surface into a tension state,an undesirable state for a brittle material.The ISRM has covered the shortage existing in traditional stress-release method,in which only finite points on the surface of PCD table can be tested for one specimen and one time.Simple as the experimental procedures are,the test results are also very accurate and reliable.This method provides the theoretical and experimental basis for testing TRS of PDC accurately. 展开更多
关键词 polycrystalline DIAMOND COMPACTS STRESS release method thermal RESIDUAL STRESS finite element analysis
下载PDF
Residual stress and radial stress gradient in polycrystalline diamond compacts 被引量:2
12
作者 Xu Guoping~(1,2),Yin Zhimin~1,Chen Qiwu~2,Xu Gen~1 (1.School of Materials Science & Engineering,Central South University,Changsha 410083,Hunan,China) (2.Changsha research institute of mining and metallurgy,Changsha 410012,Hunan,China) 《金刚石与磨料磨具工程》 CAS 北大核心 2008年第S1期88-91,96,共5页
The differential thermal expansion of the polycrystalline diamond layer and the tungsten carbide substrate results in large residual stresses as PDC cutters cooling after sintering.The residual stresses on the top sur... The differential thermal expansion of the polycrystalline diamond layer and the tungsten carbide substrate results in large residual stresses as PDC cutters cooling after sintering.The residual stresses on the top surface of the diamond layer of PDC were measured at five points along the radial direction of PDC using X-ray Diffraction Residual Stress Instrument,thus the stresses and their radial distribution were obtained.The results show that the stresses on the diamond surface are compressive,the biggest stress appears at the central point(about 1200 MPa),and that from the center to the edge of PDC,the magnitude of the stress decreases. A finite element analysis(FEA) was made to check the validity of the testing results.The FEA modeling results were found to correlate well with the measured values.Factors leading to the deviation between XRD experimental measurements and the calculations of residual stress by FEA were also analyzed. 展开更多
关键词 polycrystalline DIAMOND RESIDUAL stress XRD FEA
下载PDF
Different effects of grain boundary scattering on charge and heat transport in polycrystalline platinum and gold nanofilms 被引量:3
13
作者 马维刚 王海东 +1 位作者 张兴 Takahashi Koji 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第5期2035-2040,共6页
The in-plane electrical and thermal conductivities of several polycrystalline platinum and gold nanofilms with different thicknesses are measured in a temperature range between the boiling point of liquid nitrogen (... The in-plane electrical and thermal conductivities of several polycrystalline platinum and gold nanofilms with different thicknesses are measured in a temperature range between the boiling point of liquid nitrogen (77K) and room temperature by using the direct current heating method. The result shows that both the electrical and thermal conductivities of the nanofilms reduce greatly compared with their corresponding bulk values. However, the electrical conductivity drop is considerably greater than the thermal conductivity drop, which indicates that the influence of the internal grain boundary on heat transport is different from that of charge transport, hence leading to the violation of the Wiedemann-Franz law. We build an electron relaxation model based on Matthiessen's rule to analyse the thermal conductivity and employ the Mayadas & Shatzkes theory to analyse the electrical conductivity. Moreover, a modified Wiedemann-Franz law is provided in this paper, the obtained results from which are in good agreement with the experimental data. 展开更多
关键词 polycrystalline nanofilm grain boundary scattering thermal and electrical conductivities Wiedemann-Franz law
下载PDF
EFFECT OF MICROSTRUCTURE ON THE HARDENING AND SOFTENING BEHAVIORS OF POLYCRYSTALLINE SHAPE MEMORY ALLOYS PART Ⅱ:NUMERICAL SIMULATION UNDER AXISYMMETRICAL LOADING 被引量:2
14
作者 宋固全 孙庆平 黄克智 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2000年第4期325-334,共10页
Based on the microstructure-based constitutive model established in Part Ⅰ,a detailed numerical investigation on the role of each microstructure pa- rameter in the kinematical and kinetic evolution of polycrystalline... Based on the microstructure-based constitutive model established in Part Ⅰ,a detailed numerical investigation on the role of each microstructure pa- rameter in the kinematical and kinetic evolution of polycrystalline SMA under ax- isymmetrical tension loading is performed.Some macroscopic constitutive features of stress-induced martensite transformation are discussed. 展开更多
关键词 phase transformation MICROSTRUCTURE hardening and softening polycrystalline material shape memory alloys
下载PDF
Enhanced thermoelectric properties of p-type polycrystalline SnSe by regulating the anisotropic crystal growth and Sn vacancy 被引量:2
15
作者 Chengyan Liu Lei Miao +6 位作者 Xiaoyang Wang Shaohai Wu Yanyan Zheng Ziyang Deng Yulian Chen Guiwen Wang Xiaoyuan Zhou 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第4期103-109,共7页
Thermoelectric selenides have attracted more and more attentions recently.Herein,p-type Sn Se polycrystalline bulk materials with good thermoelectric properties are presented.By using the SnSe2 nanostructures synthesi... Thermoelectric selenides have attracted more and more attentions recently.Herein,p-type Sn Se polycrystalline bulk materials with good thermoelectric properties are presented.By using the SnSe2 nanostructures synthesized via a wetchemistry route as the precursor,polycrystalline Sn Se bulk materials were successfully obtained by a combined heattreating process under reducing atmosphere and following spark plasma sintering procedure.As a reference,the Sn Se nanostructures synthesized via a wet-chemistry route were also fabricated into polycrystalline bulk materials through the same process.The thermoelectric properties of the Sn Se polycrystalline transformed from SnSe2 nanostructures indicate that the increasing of heattreating temperature could effectively decrease the electrical resistivity,whereas the decrease in Seebeck coefficient is nearly invisible.As a result,the maximum power factor is enhanced from 5.06×10^-4W/m·K^2 to 8.08×10^-4W/m·K^2 at 612℃.On the other hand,the reference sample,which was obtained by using Sn Se nanostructures as the precursor,displays very poor power factor of only 1.30×10^-4W/m·K^2 at 537℃.The x-ray diffraction(XRD),scanning electron microscope(SEM),x-ray fluorescence(XRF),and Hall effect characterizations suggest that the anisotropic crystal growth and existing Sn vacancy might be responsible for the enhanced electrical transport in the polycrystalline Sn Se prepared by using SnSe2 precursor.On the other hand,the impact of heat-treating temperature on thermal conductivity is not obvious.Owing to the boosting of power factor,a high z T value of 1.07 at 612℃ is achieved.This study provides a new method to synthesize polycrystalline Sn Se and pave a way to improve the thermoelectric properties of polycrystalline bulk materials with similar layered structure. 展开更多
关键词 thermoelectric properties SnSe2 nanostructures polycrystalline SnSe anisotropic crystal growth
下载PDF
Density-dependent shock Hugoniot of polycrystalline diamond at pressures relevant to ICF 被引量:4
16
作者 Peng Wang Chen Zhang +9 位作者 Shaoen Jiang Xiaoxi Duan Huan Zhang LiLing Li Weiming Yang Yonggang Liu Yulong Li Liang Sun Hao Liu Zhebin Wang 《Matter and Radiation at Extremes》 SCIE CAS CSCD 2021年第3期33-41,共9页
In inertial confinement fusion(ICF),polycrystalline diamond-referred to as high density carbon(HDC)-has become a promising ablator candidate.However,with smaller grain size and lower initial density,the equation of st... In inertial confinement fusion(ICF),polycrystalline diamond-referred to as high density carbon(HDC)-has become a promising ablator candidate.However,with smaller grain size and lower initial density,the equation of state(EOS)for HDC can deviate from that for single-crystal diamond,which could be a concern for ICF designs,but current experimental EOS studies for HDC are far from sufficient to clarify how initial density affects target compressibility.Presented here are measurements of the Hugoniot for HDC with an initial density of 3.23 g/cm^(3) at pressures of 17–26 Mbar.Combined with experimental data reported for nanocrystalline diamond(NCD),a stiffer compressibility of NCD due to lower initial density is confirmed.Two porous models are used for comparison and seem to offer better agreement compared with SESAME databases.Also,the effect of temperature on the Gruneisen parameter,which is usually neglected,might need to be considered for NCD under these conditions.The present data offer important support for EOS studies relevant to ICF and constrain the construction of wide-range EOS. 展开更多
关键词 conditions. polycrystalline NEGLECTED
下载PDF
Ultrafine polycrystalline titania nanofibers for superior sodium storage 被引量:1
17
作者 Zhidan Diao Daming Zhao +3 位作者 Chunxiao Lv Hongli Liu Dongjiang Yang Shaohua Shen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第11期153-161,共9页
Sodium ion batteries have a huge potential for large-scale energy storage for the low cost and abundance of sodium resources. In this work, a novel structure of ultrafine polycrystalline TiO2 nanofibers is prepared on... Sodium ion batteries have a huge potential for large-scale energy storage for the low cost and abundance of sodium resources. In this work, a novel structure of ultrafine polycrystalline TiO2 nanofibers is prepared on nickel foam/carbon cloth by a simple vapor deposition method. The as-prepared TiO2 nanofibers show excellent performance when used as anodes for sodium-ion batteries. Specifically, the TiO2 nanofibers@nickel foam electrode delivers a high reversible capacity of 263.2 m Ahg^-1 at 0.2 C and maintains a considerable capacity of 144.2 m Ahg^-1 at 10 C. The TiO2 nanofibers@carbon cloth electrode also shows excellent high-rate capability, sustaining a capacity of 148 m Ahg^-1 after 20 0 0 cycles at 10 C. It is believed that the novel nanofibrous structure increases the contact area with the electrolyte and greatly shortens the sodium ion diffusion distance, and meanwhile, the polycrystalline nature of nanofibers exposes more intercalation sites for sodium storage. Furthermore, the density functional theory calculations exhibit strong ionic interactions between the exposed TiO2(101) facets and sodium ions, leading to a preferable sodiation/desodiation process. The unique structural features endow the TiO2 nanofibers electrodes great advantages in rapid sodium storage with an outstanding high-rate capability. 展开更多
关键词 polycrystalline TITANIA NANOFIBERS SODIUM STORAGE High-rate capability
下载PDF
Thermal residual stress of polycrystalline diamond compacts 被引量:6
18
作者 陈枫 徐根 +1 位作者 马春德 徐国平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第2期227-232,共6页
Thermal residual stresses in polycrystalline diamond compact(PDC)cutter arising from the difference in thermal expansion between the polycrystalline diamond(PCD)and the supporting tungsten carbide substrate after sint... Thermal residual stresses in polycrystalline diamond compact(PDC)cutter arising from the difference in thermal expansion between the polycrystalline diamond(PCD)and the supporting tungsten carbide substrate after sintering at high pressure and high temperature were investigated using finite element simulation,laboratory tests and theoretical analysis.The obtained results show that although compressive residual stresses exist both in the interface of PCD table and in the most region of PCD table surface, the tensile residual stress,which is a fatal shortage to PDC,can also occur near the outer diameter area of PCD table,and the maximum value is 690 MPa.Distribution of tensile stress in the PCD table is given through experimental results,which is well consistent with the numerical results.This finding may be significant in designing new PDC cutters with lower residual stress and high cutting behavior. 展开更多
关键词 polycrystalline diamond compact DIAMOND thermal residual stress stress release
下载PDF
Studies on the polycrystalline silicon/SiO2 stack as front surface field for IBC solar cells by two-dimensional simulations 被引量:1
19
作者 姜帅 贾锐 +4 位作者 陶科 侯彩霞 孙恒超 于志泳 李勇滔 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第8期481-490,共10页
Interdigitated back contact(IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrys... Interdigitated back contact(IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrystalline silicon/SiO_2 stack structure as front surface field to passivate the front surface of IBC solar cells is proposed. The passivation quality of this structure is investigated by two dimensional simulations. Polycrystalline silicon layer and SiO_2 layer are optimized to get the best passivation quality of the IBC solar cell. Simulation results indicate that the doping level of polycrystalline silicon should be high enough to allow a very thin polycrystalline silicon layer to ensure an effective passivation and small optical losses at the same time. The thickness of SiO_2 should be neither too thin nor too thick, and the optimal thickness is 1.2 nm.Furthermore, the lateral transport properties of electrons are investigated, and the simulation results indicate that a high doping level and conductivity of polycrystalline silicon can improve the lateral transportation of electrons and then the cell performance. 展开更多
关键词 polycrystalline silicon SIO2 solar cell PASSIVATION simulation IBC
下载PDF
Effect of Boundary Layers on Polycrystalline Silicon Chemical Vapor Deposition in a Trichlorosilane and Hydrogen System 被引量:4
20
作者 张攀 王伟文 +1 位作者 陈光辉 李建隆 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第1期1-9,共9页
This paper presents the numerical investigation of the effects of momentum, thermal and species boundary layers on the characteristics of polycrystalline silicon deposition by comparing the deposition rates in three c... This paper presents the numerical investigation of the effects of momentum, thermal and species boundary layers on the characteristics of polycrystalline silicon deposition by comparing the deposition rates in three chemical vapor deposition (CVD) reactors. A two-dimensional model for the gas flow, heat transfer, and mass transfer was coupled to the gas-phase reaction and surface reaction mechanism for the deposition of polycrystalline silicon from trichlorosilane (TCS)-hydrogen system. The model was verified by comparing the simulated growth rate with the experimental and numerical data in the open literature. Computed results in the reactors indicate that the deposition characteristics are closely related to the momentum, thermal and mass boundary layer thickness. To yield higher deposition rate, there should be higher concentration of TCS gas on the substrate, and there should also be thinner boundary layer of HCl gas so that HCl gas could be pushed away from the surface of the substrate immediately. 展开更多
关键词 boundary layer polycrystalline silicon numerical simulation mass diffusion
下载PDF
上一页 1 2 94 下一页 到第
使用帮助 返回顶部