In this paper, a nonlinear solution is first presented for a circular sandwich plate with the flexure rigidity of the face layers taken into account. In solving the nonlinear bending equations, a modified power series...In this paper, a nonlinear solution is first presented for a circular sandwich plate with the flexure rigidity of the face layers taken into account. In solving the nonlinear bending equations, a modified power series method is proposed. The uniformly distributed loading and the clamped but sliding boundary condition are also assumed. Then our results are compared with those from Liu Ren-huai and Shi-Yun-fang[15]. The present solution can be used ax a more accurate basis in engineering applications.展开更多
In this paper, Von Karman's set of nonlinear equations for rectangular plates with large deflection is divided into several sets of linear equations by perturbation method, the dimensionless center deflection bein...In this paper, Von Karman's set of nonlinear equations for rectangular plates with large deflection is divided into several sets of linear equations by perturbation method, the dimensionless center deflection being taken as a perturbation parameter. These sets of linear equations are solved by the spline finite-point (SFP) method and by the spline finite element (SFE) method. The solutions for rectangular plates having any length-to-width ratios under a uniformly distributed load and with various boundary conditions are presented, and the analytical formulas for displacements and deflections are given in the paper. The computer programs are worked out by ourselves. Comparison of the results with those in other papers indicates that the results of this paper are satisfactorily better.展开更多
By using the modified iteration method of large deflection theory of plates with variable thichness[1], we solve the problem of circular plates with variable thickness subjected to combined loads under the boundary co...By using the modified iteration method of large deflection theory of plates with variable thichness[1], we solve the problem of circular plates with variable thickness subjected to combined loads under the boundary conditions of the clamped edges and get comparatively more accurate second-order approximate analytical solution. If the results of this paper are degraded into the special cases, the results coinciding with those of papers [1,2] can be obtained. In this paper, the characteristic curves are plotted and some comparisons are made. The results of this paper are satisfactory.展开更多
The interaction between plates and foundations is a typical problem encountered in geotechnical engineering. The long-term plate performance is highly dependent on the theological characteristics of ground soil. Compa...The interaction between plates and foundations is a typical problem encountered in geotechnical engineering. The long-term plate performance is highly dependent on the theological characteristics of ground soil. Compared with conventional linear theology, the fractional calculus-based theory is a more powerful mathematical tool that can address this issue. This paper proposes a fractional Merchant model (FMM) to investigate the time-dependent behavior of a simply supported rectangular plate on viscoelastic foundation. The correspondence principle involving Laplace transforms was employed to derive the closed-form solutions of plate response under uniformly distributed load. The plate deflection, bending moment, and foundation reaction calculated using the FMM were compared with the results obtained from the analogous elastic model (EM) and the standard Merchant model (SMM). It is shown that the upper and lower bound solutions of the FMM can be determined using the EM. In addition, a parametric study was performed to examine the influences of the model parameters on the time- dependent behavior of the plate-foundation interaction problem. The results indicate that a small fractional differential order corresponds to a plate resting on a sandy soil foundation, while the fractional differential order value should be increased for a clayey soil foundation. The long-term performance of a foundation plate can be accurately simulated by varying the values of the fractional differential order and the viscosity coefficient. The observations from this study reveal that the proposed fractional model has the capability to capture the variation of plate deflection over many decades of time.展开更多
In this paper, the theory of elastic circular plate with no classical Kirchhoff-Love assumptions is established on the basis of a previous paper. In this theory, no classical Kirchhoff-Love assumptions are pre-assumed...In this paper, the theory of elastic circular plate with no classical Kirchhoff-Love assumptions is established on the basis of a previous paper. In this theory, no classical Kirchhoff-Love assumptions are pre-assumed and the axial symmetrical analytic solution of fixed circular plate under the action of uniform pressure is obtained. Comparison of this solution and the known classical solution shows that this new solution agrees better than classical solution with the experiment measurement.This gives also the quantitative effect of the thickness on the deflection of circular plate with moderate thickness.展开更多
Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is app...Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is applied to measure the out-of-plane deformation of structures with one-shot projection.Through color fringe recognizing,decoding and triangulation processing for the captured images corresponding to each deformation state,the feasibility of the method is testified by the measurement of elastic deflections of a flexible square plate,showing good agreement with those from the calibrated displacement driver.The plastic deformation of two alloy aluminum rectangular tubes is measured to show the technique application to surface topographic evaluation of the buckling structures with large displacements.展开更多
The theoretical model of docking impact dynamics based on flexible cone is presented according to Foppl-von Karman's non-linear differential equations and Hertz contact theory. Finite diflerence technique is used to ...The theoretical model of docking impact dynamics based on flexible cone is presented according to Foppl-von Karman's non-linear differential equations and Hertz contact theory. Finite diflerence technique is used to solve this theoretical model. Results of the theoretical model show good agreement with the experimental and ANSYS/LS-DYNA simulation results. In ad- dition, the influence of flexible cone parameters on impact process is discussed based on theoretical model systemically.展开更多
基金Project Supported by the Science Fund of the Chinese Academy of Sciences
文摘In this paper, a nonlinear solution is first presented for a circular sandwich plate with the flexure rigidity of the face layers taken into account. In solving the nonlinear bending equations, a modified power series method is proposed. The uniformly distributed loading and the clamped but sliding boundary condition are also assumed. Then our results are compared with those from Liu Ren-huai and Shi-Yun-fang[15]. The present solution can be used ax a more accurate basis in engineering applications.
文摘In this paper, Von Karman's set of nonlinear equations for rectangular plates with large deflection is divided into several sets of linear equations by perturbation method, the dimensionless center deflection being taken as a perturbation parameter. These sets of linear equations are solved by the spline finite-point (SFP) method and by the spline finite element (SFE) method. The solutions for rectangular plates having any length-to-width ratios under a uniformly distributed load and with various boundary conditions are presented, and the analytical formulas for displacements and deflections are given in the paper. The computer programs are worked out by ourselves. Comparison of the results with those in other papers indicates that the results of this paper are satisfactorily better.
文摘By using the modified iteration method of large deflection theory of plates with variable thichness[1], we solve the problem of circular plates with variable thickness subjected to combined loads under the boundary conditions of the clamped edges and get comparatively more accurate second-order approximate analytical solution. If the results of this paper are degraded into the special cases, the results coinciding with those of papers [1,2] can be obtained. In this paper, the characteristic curves are plotted and some comparisons are made. The results of this paper are satisfactory.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41230636, 41302217)Suzhou Science and Technology Development Program (Grant No. SYG201213)
文摘The interaction between plates and foundations is a typical problem encountered in geotechnical engineering. The long-term plate performance is highly dependent on the theological characteristics of ground soil. Compared with conventional linear theology, the fractional calculus-based theory is a more powerful mathematical tool that can address this issue. This paper proposes a fractional Merchant model (FMM) to investigate the time-dependent behavior of a simply supported rectangular plate on viscoelastic foundation. The correspondence principle involving Laplace transforms was employed to derive the closed-form solutions of plate response under uniformly distributed load. The plate deflection, bending moment, and foundation reaction calculated using the FMM were compared with the results obtained from the analogous elastic model (EM) and the standard Merchant model (SMM). It is shown that the upper and lower bound solutions of the FMM can be determined using the EM. In addition, a parametric study was performed to examine the influences of the model parameters on the time- dependent behavior of the plate-foundation interaction problem. The results indicate that a small fractional differential order corresponds to a plate resting on a sandy soil foundation, while the fractional differential order value should be increased for a clayey soil foundation. The long-term performance of a foundation plate can be accurately simulated by varying the values of the fractional differential order and the viscosity coefficient. The observations from this study reveal that the proposed fractional model has the capability to capture the variation of plate deflection over many decades of time.
文摘In this paper, the theory of elastic circular plate with no classical Kirchhoff-Love assumptions is established on the basis of a previous paper. In this theory, no classical Kirchhoff-Love assumptions are pre-assumed and the axial symmetrical analytic solution of fixed circular plate under the action of uniform pressure is obtained. Comparison of this solution and the known classical solution shows that this new solution agrees better than classical solution with the experiment measurement.This gives also the quantitative effect of the thickness on the deflection of circular plate with moderate thickness.
文摘Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is applied to measure the out-of-plane deformation of structures with one-shot projection.Through color fringe recognizing,decoding and triangulation processing for the captured images corresponding to each deformation state,the feasibility of the method is testified by the measurement of elastic deflections of a flexible square plate,showing good agreement with those from the calibrated displacement driver.The plastic deformation of two alloy aluminum rectangular tubes is measured to show the technique application to surface topographic evaluation of the buckling structures with large displacements.
基金supported by the National Natural Science Foundation of China(Grant Nos.91216201 and 51205403)
文摘The theoretical model of docking impact dynamics based on flexible cone is presented according to Foppl-von Karman's non-linear differential equations and Hertz contact theory. Finite diflerence technique is used to solve this theoretical model. Results of the theoretical model show good agreement with the experimental and ANSYS/LS-DYNA simulation results. In ad- dition, the influence of flexible cone parameters on impact process is discussed based on theoretical model systemically.