Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the da...Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the data from a single monitoring point and neglect the spatial relationships between multiple monitoring points.Besides,most models lack flexibility in providing predictions for multiple days after monitoring activity.This study proposes a sequence-to-sequence(seq2seq)two-dimensional(2D)convolutional long short-term memory neural network(S2SCL2D)for predicting the spatiotemporal wall deflections induced by deep excavations.The model utilizes the data from all monitoring points on the entire wall and extracts spatiotemporal features from data by combining the 2D convolutional layers and long short-term memory(LSTM)layers.The S2SCL2D model achieves a long-term prediction of wall deflections through a recursive seq2seq structure.The excavation depth,which has a significant impact on wall deflections,is also considered using a feature fusion method.An excavation project in Hangzhou,China,is used to illustrate the proposed model.The results demonstrate that the S2SCL2D model has superior prediction accuracy and robustness than that of the LSTM and S2SCL1D(one-dimensional)models.The prediction model demonstrates a strong generalizability when applied to an adjacent excavation.Based on the long-term prediction results,practitioners can plan and allocate resources in advance to address the potential engineering issues.展开更多
A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shea...A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.展开更多
Islands and the mainland are separated by seas,and the distances between them might be so long that the height on the mainland cannot be exactly translated to the islands,resulting in different height systems on the m...Islands and the mainland are separated by seas,and the distances between them might be so long that the height on the mainland cannot be exactly translated to the islands,resulting in different height systems on the mainland and the islands.In this study,we used astrogeodetic deflections of the vertical and ellipsoidal heights of points on the mainland and island near their coastlines to implement height connection across sea areas.First,the modeled gravity and modeled astrogeodetic vertical deflections of segmentation points along connecting routes over the sea between the mainland and the island were determined by Earth Gravity Model(EGM),and the ellipsoidal heights of segmentation points were determined by the satellite altimetry data sets.Second,we used a linear interpolation model to increase the precision of the vertical deflections of segmentation points.Third,we computed the geopotential difference of points between the mainland and the island using a method derived from geopotential theory and the astronomical leveling principle.Finally,we estimated the normal height of the point on the island using the geopotential-difference iterative computation approach.Using observed data of normal heights,ellipsoidal heights,and astrogeodetic vertical deflections referring to height sites in Qingdao,Shandong Province,we conducted a numerical experiment involving the normal height connection across sea regions.We determined the data of the ellipsoidal heights and gravity of segmentation points along the connecting route across the water in the numerical experiment using DTU10.The distance of the height connection across the sea was approximately 10.5 km.According to China's official leveling specifications,the experimental results met the criterion of third-class leveling precision.展开更多
By using the concept of modified structural number(SNC)and deflection measurements,a simplified calculation methodology,that permits the structural condition evaluation of an existing pavement,is being proposed.The va...By using the concept of modified structural number(SNC)and deflection measurements,a simplified calculation methodology,that permits the structural condition evaluation of an existing pavement,is being proposed.The values of SNC and the curvature parameters were first determined through simulations using the ELSYM-5 software.Deflection measurements were carried out in experimental segments of Brazilian highways.The resilient moduli of each layer were determined from backcalculation using the ELMOD program for a three-layer system.Theoretical correlation models between SNC and the basin deformation parameter were determined and later,calibrated with the results of experimental sections.Utilizing the studied models,a good correlation was found between SNC,area parameter and maximum deflection,enabling the determination of SNC through deflection measurements and assisting in the diagnostic of structural condition of asphalt pavements.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42307218)the Foundation of Key Laboratory of Soft Soils and Geoenvironmental Engineering(Zhejiang University),Ministry of Education(Grant No.2022P08)the Natural Science Foundation of Zhejiang Province(Grant No.LTZ21E080001).
文摘Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the data from a single monitoring point and neglect the spatial relationships between multiple monitoring points.Besides,most models lack flexibility in providing predictions for multiple days after monitoring activity.This study proposes a sequence-to-sequence(seq2seq)two-dimensional(2D)convolutional long short-term memory neural network(S2SCL2D)for predicting the spatiotemporal wall deflections induced by deep excavations.The model utilizes the data from all monitoring points on the entire wall and extracts spatiotemporal features from data by combining the 2D convolutional layers and long short-term memory(LSTM)layers.The S2SCL2D model achieves a long-term prediction of wall deflections through a recursive seq2seq structure.The excavation depth,which has a significant impact on wall deflections,is also considered using a feature fusion method.An excavation project in Hangzhou,China,is used to illustrate the proposed model.The results demonstrate that the S2SCL2D model has superior prediction accuracy and robustness than that of the LSTM and S2SCL1D(one-dimensional)models.The prediction model demonstrates a strong generalizability when applied to an adjacent excavation.Based on the long-term prediction results,practitioners can plan and allocate resources in advance to address the potential engineering issues.
基金supported by the National Natural Science Foundation of China(51978345,52278264).
文摘A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.
基金financially supported by the foundation of the Key Laboratory of Marine Environmental Survey Technology and Application,Ministry of Natural Resources,China (No. MESTA-2020-B006)the National Natural Science Foundation of China (No.41774001)
文摘Islands and the mainland are separated by seas,and the distances between them might be so long that the height on the mainland cannot be exactly translated to the islands,resulting in different height systems on the mainland and the islands.In this study,we used astrogeodetic deflections of the vertical and ellipsoidal heights of points on the mainland and island near their coastlines to implement height connection across sea areas.First,the modeled gravity and modeled astrogeodetic vertical deflections of segmentation points along connecting routes over the sea between the mainland and the island were determined by Earth Gravity Model(EGM),and the ellipsoidal heights of segmentation points were determined by the satellite altimetry data sets.Second,we used a linear interpolation model to increase the precision of the vertical deflections of segmentation points.Third,we computed the geopotential difference of points between the mainland and the island using a method derived from geopotential theory and the astronomical leveling principle.Finally,we estimated the normal height of the point on the island using the geopotential-difference iterative computation approach.Using observed data of normal heights,ellipsoidal heights,and astrogeodetic vertical deflections referring to height sites in Qingdao,Shandong Province,we conducted a numerical experiment involving the normal height connection across sea regions.We determined the data of the ellipsoidal heights and gravity of segmentation points along the connecting route across the water in the numerical experiment using DTU10.The distance of the height connection across the sea was approximately 10.5 km.According to China's official leveling specifications,the experimental results met the criterion of third-class leveling precision.
文摘By using the concept of modified structural number(SNC)and deflection measurements,a simplified calculation methodology,that permits the structural condition evaluation of an existing pavement,is being proposed.The values of SNC and the curvature parameters were first determined through simulations using the ELSYM-5 software.Deflection measurements were carried out in experimental segments of Brazilian highways.The resilient moduli of each layer were determined from backcalculation using the ELMOD program for a three-layer system.Theoretical correlation models between SNC and the basin deformation parameter were determined and later,calibrated with the results of experimental sections.Utilizing the studied models,a good correlation was found between SNC,area parameter and maximum deflection,enabling the determination of SNC through deflection measurements and assisting in the diagnostic of structural condition of asphalt pavements.
文摘以圆形截面桩为例,基于修正后的Loganathan公式,利用文克尔弹性地基梁模型、m法计算理论和荷载传递法,建立盾构隧道近接斜交侧穿既有桥梁桩基的变形计算方法.通过现场监测结果验证计算方法的工程适用性,并利用该方法分析侧穿桥梁桩基施工引起桩身水平挠曲变形的主要影响因素.结果表明:桩身水平位移和桩顶竖向位移的理论计算结果与监测结果之间的最大误差分别不超过14.6%和2.7%.与现有方法相比,所提方法的计算结果更接近实测值.入土段桩身水平挠曲程度与隧道轴心和桩基中心轴线之间的水平距离、隧道侧穿斜交角呈负相关;最大水平挠曲位移与隧道侧穿斜交角呈负相关.当水平侧穿距离为6.0 m时,最大水平挠曲变形为7.4 mm;当隧道盾构侧穿斜交角为70.0°时,入土段桩身最大水平挠曲位移为15.4 mm.