Understandings of the effect of hot deformation parameters close to the practical production line on grain refinement are crucial for enhancing both the strength and toughness of future rail steels.In this work,the au...Understandings of the effect of hot deformation parameters close to the practical production line on grain refinement are crucial for enhancing both the strength and toughness of future rail steels.In this work,the austenite dynamic recrystallization(DRX)behaviors of a eutectoid pearlite rail steel were studied using a thermo-mechanical simulator with hot deformation parameters frequently employed in rail production lines.The single-pass hot deformation results reveal that the prior austenite grain sizes(PAGSs)for samples with different deformation reductions decrease initially with an increase in deformation temperature.However,once the deformation temperature is beyond a certain threshold,the PAGSs start to increase.It can be attributed to the rise in DRX volume fraction and the increase of DRX grain with deformation temperature,respectively.Three-pass hot deformation results show that the accumulated strain generated in the first and second deformation passes can increase the extent of DRX.In the case of complete DRX,PAGS is predominantly determined by the deformation temperature of the final pass.It suggests a strategic approach during industrial production where part of the deformation reduction in low temperature range can be shifted to the medium temperature range to release rolling mill loads.展开更多
The deformation mechanisms and dynamic recrystallization(DRX)behavior of specifically grown bicrystals with a symmetric 90°<1010>and 90°<1120>tilt grain boundary,respectively,were investigated un...The deformation mechanisms and dynamic recrystallization(DRX)behavior of specifically grown bicrystals with a symmetric 90°<1010>and 90°<1120>tilt grain boundary,respectively,were investigated under deformation in plane strain compression at 200℃and 400℃.The microstructures were analyzed by panoramic optical microscopy and large-area electron backscatter diffraction(EBSD)orientation mapping.The analysis employed a meticulous approach utilizing hundreds of individual,small EBSD maps with a small step size that were stitched together to provide comprehensive access to orientation and misorientation data on a macroscopic scale.Basal slip primarily governed the early stages of deformation at the two temperatures,and the resulting shear induced lattice rotation around the transverse direction(TD)of the sample.The existence of the grain boundary gave rise to dislocation pile-up in its vicinity,leading to much larger TD-lattice rotations within the boundary region compared to the bulk.With increasing temperature,the deformation was generally more uniform towards the bulk due to enhanced dislocation mobility and more uniform stress distribution.Dynamic recrystallization at 200℃was initiated in{1011}-compression twins at strains of 40%and higher.At 400℃,DRX consumed the entire grain boundary region and gradually replaced the deformed microstructure with progressing deformation.The recrystallized grains displayed characteristic orientations,such that their c-axes were perpendicular to the TD and additionally scattered between 0°and 60°from the loading axis.These recrystallized grains displayed mutual rotations of up to 30°around the c-axes of the initial grains,forming a discernible basal fiber texture component,prominently visible in the{1120}pole figure.It is noteworthy that the deformation and DRX behaviors of the two analyzed bicrystals exhibited marginal variations in response to strain and deformation temperature.展开更多
The flow stress behavior of ZK60 alloy at elevated temperature was investigated. The strain hardening and dynamic recrystallization of the alloy were modeled by Kocks-Meching model and Avrami equation, respectively. A...The flow stress behavior of ZK60 alloy at elevated temperature was investigated. The strain hardening and dynamic recrystallization of the alloy were modeled by Kocks-Meching model and Avrami equation, respectively. A new constitutive equation during hot deformation was constructed to predict the flow stress considering the dynamic recrystallization. The results show that the flow stress curves predicted by the proposed equation have high correlation coefficients with the experimental data, which confirms that the developed model is accurate and effective to establish the flow stress equation of ZK60 magnesium alloy during hot deformation. Microstructure observation shows that dynamic recovery occurs in the initial stage of hot deformation. However, the microstructure turns to recrvstallization structure as the strain increases.展开更多
Mechanical behavior of nickel?titanium shape memory alloy(NiTi SMA) under hot deformation was investigated according to the true stress—strain curves of NiTi samples under compression at the strain rates of 0.001-...Mechanical behavior of nickel?titanium shape memory alloy(NiTi SMA) under hot deformation was investigated according to the true stress—strain curves of NiTi samples under compression at the strain rates of 0.001-1 s-1 and at the temperatures of 600?1000℃.Dynamic recovery and dynamic recrystallization of NiTi SMA were systematically investigated by microstructural evolution.The influence of the strain rates,the deformation temperatures and the deformation degree on the dynamic recovery and dynamic recrystallization of NiTi SMA was obtained as well.NiTi SMA was characterized by the combination of dynamic recovery and dynamic recrystallization at 600℃ and 700℃,but the complete dynamic recrystallization occurred at other deformation temperatures.Increasing the deformation temperatures or decreasing the stain rates leads to larger equiaxed grains.The deformation degree has an important influence on the dynamic recrystallization of NiTi SMA.There exists the critical deformation degree during the dynamic recrystallization of NiTi SMA,beyond which the larger deformation degree contributes to obtaining the finer equiaxed grains.展开更多
The dynamic recrystallization behavior of 7085 aluminum alloy during hot compression at various temperatures (573?723 K) and strain rates (0.01-10 s^-1) was studied by electron back scattered diffraction (EBSD...The dynamic recrystallization behavior of 7085 aluminum alloy during hot compression at various temperatures (573?723 K) and strain rates (0.01-10 s^-1) was studied by electron back scattered diffraction (EBSD), electro-probe microanalyzer (EPMA) and transmission electron microscopy (TEM). It is shown that dynamic recovery is the dominant softening mechanism at high Zener?Hollomon (Z) values, and dynamic recrystallization tends to appear at low Z values. Hot compression with ln Z=24.01 (723 K, 0.01 s?1) gives rise to the highest fraction of recrystallization of 10.2%. EBSD results show that the recrystallized grains are present near the original grain boundaries and exhibit similar orientation to the deformed grain. Strain-induced boundary migration is likely the mechanism for dynamic recrystallization. The low density of Al3Zr dispersoids near grain boundaries can make contribution to strain-induced boundary migration.展开更多
The deformation and recrystallization textures of 6111 Al alloy with various precipitation states have been investigated by means of the orientation distribution functions (ODFs). It was found that the precipitation s...The deformation and recrystallization textures of 6111 Al alloy with various precipitation states have been investigated by means of the orientation distribution functions (ODFs). It was found that the precipitation state had significant effects on both rolling and recrystallization textures of Al alloy. For the alloy with no or little precipitate, the orientation intensities were distributed more homogeneously along the β-fiber. With increasing aging temperature, the orientation intensities along the β-fiber increased firstly and decreased then. Simultaneity, the orientation intensities along the β-fiber were distributed more and more inhomogeneously. On the other hand, with the precipitates increasing the recrystallization textures changed gradually from {001}<UVW> and very weak {011}<111> orientation to the strong {001}<311> and {011}<111> orientation.展开更多
α-titanium and its alloys with a dual-phase structure (α+β) were deformed dynamically under strain rate of about 10^4 s^-1. The formation and microstructural evolution of the localized shear bands were character...α-titanium and its alloys with a dual-phase structure (α+β) were deformed dynamically under strain rate of about 10^4 s^-1. The formation and microstructural evolution of the localized shear bands were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results reveal that both the strain and strain rate should be considered simultaneously as the mechanical conditions for shear band formation, and twinning is an important mode of deformation. Both experimental and calculation show that the materials within the bands underwent a superhigh strain rate (9×10^5 S^-1) deformation, which is two magnitudes of that of average strain rate required for shear band formation; the dislocations in the bands can be constricted and developed into cell structures; the phase transformation from α to α2 within the bands was observed, and the transformation products (α2) had a certain crystallographic orientation relationship with their parent; the equiaxed grains with an average size of 10 μm in diameter observed within the bands are proposed to be the results of recrystallization.展开更多
The isothermal single-stage compression of 35CrMo structural steel has been carried out by using Gleeble 1500 simulator at the temperature range of 950℃ to 1150℃ and strain rate range of 0.01s-1 to 10s-1. The effect...The isothermal single-stage compression of 35CrMo structural steel has been carried out by using Gleeble 1500 simulator at the temperature range of 950℃ to 1150℃ and strain rate range of 0.01s-1 to 10s-1. The effect of hot deformation parameters, such as strain rate, deformed temperature and initial grain size on the flow stress behavior was investigated. The activation energy of tested alloy was calculated, which is 378.16kJ/mol; The relationships between the peak stress (σp), the peak stain (εp), the critical strain (εc) and Z parameter were established. The micro structure evolution shows the pre-existing austenite grain boundaries constitute the principal nucleation sites for dynamic recrystallization (DRX), and the initial austenite grain size affects the grain size of DRX slightly. The kinetic mathematical model of DRX of 35CrMo is: XDRX=1-exp(-3.23-2.28) and Ddyn = 2.252× 10Z-0.22.展开更多
The characteristics of dynamic recrystallization (DRX) in Mg-Y-Nd-Gd-Zr-RE magnesium alloy were investigated by compression tests at temperatures between 523 and 723 K and at strain rates ranging from 0.002 to 1 s^-...The characteristics of dynamic recrystallization (DRX) in Mg-Y-Nd-Gd-Zr-RE magnesium alloy were investigated by compression tests at temperatures between 523 and 723 K and at strain rates ranging from 0.002 to 1 s^-1 with maximum strain of 0.693. The strainhardening rate can be obtained from true stress-true strain curves, plots of θ-σ, -(δθ/δσ-)-a and lnθ-σ in different compression conditions were obtained by further study. The critical condition of the onset of DRX process was determined as ((δ/δσ( δθ/δσ))=0. In the range of the above deformation temperature and strain rate, the ratio of critical stress (σc) to peak stress (σm) and critical strain (εc) to the peak strain (εm) stood at σc/σm=0.62-0.89 and εc/εm=0.11-0.37, respectively. DRX could be observed during hot detormation process, microstructure evolution of the magnesium alloy at different temperatures and strain rates were studied with the aid of optical microscope(OM), and the average recrystallized grain size was measured by means of intercepts on photomicrographs. It was shown that the average dynamically recrystallized grain size (drew) changed with different deformation parameters, the natural logarithm of the average recrystallized grain size varied linearly with the natural logarithm of Zener-Hollomon parameter; the peak stress changed with the average recrystallized grain size, and the natural logarithm of the average recrystallized grain size varied linearly with the natural logarithm of the peak stress.展开更多
By using a cellular automaton method, microstructure evolution of recrystallization in austenite during hot deformation was simulated for C-Mn steels. A model takes into account the influence of deformation temperatur...By using a cellular automaton method, microstructure evolution of recrystallization in austenite during hot deformation was simulated for C-Mn steels. A model takes into account the influence of deformation temperature, strain, and strain rate on the dynamic recrystallization fraction, and the effect of the keeping time on the static recrystallization fraction based on a hot deformation test on a Gleeble-1500 simulator. In addition, the size changing of γ grains during continuous hot deformation was simulated by applying the model.展开更多
To investigate the dynamic recrystallization behavior of 7xxx aluminum alloys,the isothermal compression tests were carried on the 7056 aluminum alloy in the temperatures range of 320-440℃and in the strain rates rang...To investigate the dynamic recrystallization behavior of 7xxx aluminum alloys,the isothermal compression tests were carried on the 7056 aluminum alloy in the temperatures range of 320-440℃and in the strain rates range of 0.001-1 s^(-1).In addition,the microstructure of samples were observed via electron back scanning diffraction microscope.According to the results,true stress and true strain curves were established and an Arrhenius-type equation was established,showing the flow stress increases with the temperature decreasing and the strain rate increasing.The critical strain(ε_(c))and the critical stress(σ_(c))of the onset of dynamic recrystallization were identified via the strain hardening rate and constructed relationship between deformation parameters as follows:ε_(c)=6.71×10^(-4)Z^(0.1373) and σ_(p)=1.202σ_(c)+12.691.The DRX is incomplete in this alloy,whose volume fraction is only 20%even if the strain reaches 0.9.Through this study,the flow stress behavior and DRX behavior of 7056 aluminum alloys are deeply understood,which gives benefit to control the hot working process.展开更多
The deformation behavior of V-10Cr-5Ti alloy was studied on the Gleeble-1500 thermomechanical simulator at the temperatures of 950-1350℃, and the strain rates of 0.01-10 s^-1. Based on the Arrhenius model, dislocatio...The deformation behavior of V-10Cr-5Ti alloy was studied on the Gleeble-1500 thermomechanical simulator at the temperatures of 950-1350℃, and the strain rates of 0.01-10 s^-1. Based on the Arrhenius model, dislocation density model, nucleation model and grain growth model, a numerical cellular automaton (CA) model coupling simulation of hot deformation is established to simulate and characterize the microstructural evolution during DRX. The results show that the flow stress is fairly sensitive to the strain rate and deformation temperature. The error between the predicted stress by the Arrhenius model and the actual measured value is less than 8%. The initial average grain size calculated by the CA model is 86.25 μm, which is close to the experimental result (85.63 μm). The simulations show that the effect of initial grain size on the dynamic recrystallization microstructure evolution is not significant, while increasing the strain rate or reducing the temperature can refine the recrystallized grains.展开更多
Based on the steady-state strain measured by single-pass hot compression tests,the method by a double-pass hot compression testing was developed to measure the metadynamic-recrystallization kinetics.The metadynamic re...Based on the steady-state strain measured by single-pass hot compression tests,the method by a double-pass hot compression testing was developed to measure the metadynamic-recrystallization kinetics.The metadynamic recrystallization behavior of low-alloy steel Q345B during hot compression deformation was investigated in the temperature range of 1 000-1 100℃,the strain rate range of 0.01-0.10 s -1 and the interpass time range of 0.5-50 s on a Gleeble-3500 thermo-simulation machine.The results show that metadynamic recrystallization during the interpass time can be observed.As the deformation temperature and strain rate increase,softening caused by metadynamic recrystallization is obvious.According to the data of thermo-simulation,the metadynamic recrystallization activation energy is obtained to be Qmd=100.674 kJ/mol and metadynamic recrystallization kinetics model is set up.Finally,the error analysis of metadynamic recrystallization kinetics model proves that the model has high accuracy(correlation coefficient R=0.988 6).展开更多
The hot deformation behavior of a Nb microalloyed anti-seismic rebar was investigated at deformation temperatures of 950-1 100 ℃ and strain rates of 0. 01-0. 1 s- 1 on a Gleeble-3800 thermo-mechnical simulator. The f...The hot deformation behavior of a Nb microalloyed anti-seismic rebar was investigated at deformation temperatures of 950-1 100 ℃ and strain rates of 0. 01-0. 1 s- 1 on a Gleeble-3800 thermo-mechnical simulator. The flow stress-strain curves show the typical dynamic recrystallization with a peak,before reaching the steady state flow at higher deformation temperatures and lower strain rates. The constitutive equation governing the dynamic recrystallization( DRX) was obtained and the average activation energy of deformation was calculated as Q = 389. 5 kJ / mol by the regression analysis. The DRX grain size was also found to decrease with the increasing strain rate and the decreasing deformation temperature. The austenite grain size was refined from 118. 0 μm to 15. 07-40. 01 μm by DRX. The DRX grain size under diverse deformation conditions predicted by mathematical model agrees well with experimental results.展开更多
Recrystallized grains, less than 200 nm in diameter were observed in heavily shear zones of a high strength low alloy steel and a Ni-based alloy, and Also grain refinement, less than 3 μm in diameter was made in high...Recrystallized grains, less than 200 nm in diameter were observed in heavily shear zones of a high strength low alloy steel and a Ni-based alloy, and Also grain refinement, less than 3 μm in diameter was made in high purity aluminum by ECAE at ambient temperature. The experimental results showed that high strain rate and large deformation could induce dynamic recrystallization.Based on dislocation dynamics and grain orientation change enhanced by plastic deformation,a model for the recrystallization process is developed. The model is used to explain the ultra fine grains which are formed at a temperature still much lower than that for the conventional recrystallization展开更多
The dynamic recrystallization(DRX) and texture development, taking place during hot deformation of magnesium alloy AZ31 with a strong wire texture, were studied in compression at 673 K (0.73 Tm). Two kinds of samples ...The dynamic recrystallization(DRX) and texture development, taking place during hot deformation of magnesium alloy AZ31 with a strong wire texture, were studied in compression at 673 K (0.73 Tm). Two kinds of samples were machined parallelly to the extruded and transverse directions of Mg alloy rods. New fine grains are evolved at original grain boundaries corrugated at low strains and develop rapidly in the medium range of strain, finally leading to a roughly full evolution of equiaxial fine grains. Kink bands are evolved at grain boundaries corrugated and also frequently in grain interiors at low strains. The boundary misorientations of kink band increase rapidly with increasing strain and approach a saturation value in high strain. The average size of the regions fragmented by kink band is almost the same as that of new grains evolved in high strain. These characteristics of new grain evolution process are not changed by the orientation of the samples, while the flow behaviors clearly depend on it. It is concluded that new grain evolution can be controlled by a deformation-induced continuous reaction, i.e. continuous dynamic recrystallization(DRX). The latter is discussed by comparing with conventional, i.e. discontinuous DRX.展开更多
In this paper, the recrystallization behavior of steel 9Gr- 1Mo - V-Wb - N at high temperature was studied using Gleeble - 1500 thermalmechanical simulator.The critical conditions of occurrence of dy- namic recrys...In this paper, the recrystallization behavior of steel 9Gr- 1Mo - V-Wb - N at high temperature was studied using Gleeble - 1500 thermalmechanical simulator.The critical conditions of occurrence of dy- namic recrystallization during hot deformation were obtained,and by means of double hit testing with an inter -hit time, the metabynamic recrystallization between rolling passes and its effect factors were also imitated.Additionally,the deformation activation energy of T91 steel,the relationship between critical stress,strain, temperature, and strain rate were regressed respectively, the results were sati- sfied.展开更多
The behavior of high temperature deformation and recrystallization of W9Mo3Cr4V steel have been studied in this paper. Dynamic precipitation during deformation has also been investigated. In W9Mo3Cr4V steel, stress ...The behavior of high temperature deformation and recrystallization of W9Mo3Cr4V steel have been studied in this paper. Dynamic precipitation during deformation has also been investigated. In W9Mo3Cr4V steel, stress strain curves exhibit many features. The deformation structures and the effects of deformation parameters on dynamic recrystallization are more complicated than those in low alloy steels. For W9Mo3Cr4V steel, there is a large number of residual carbides on the matrix at high temperature. Also, many second carbides precipitate from the matrix during high temperature deformation. These two kinds of carbides (especially the latter) make the behavior of deformation and dynamic recrystallization in W9Mo3Cr4V steel different from those in low alloy steels. ABSTRACT:The behavior of high temperature deformation and recrystallization of W9Mo3Cr4V steel have been studied in this paper. Dynamic precipitation during deformation has also been investigated. In W9Mo3Cr4V steel, stress strain curves exhibit many features. The deformation structures and the effects of deformation parameters on dynamic recrystallization are more complicated than those in low alloy steels. For W9Mo3Cr4V steel, there is a large number of residual carbides on the matrix at high temperature. Also, many second carbides precipitate from the matrix during high temperature deformation. These two kinds of carbides (especially the latter) make the behavior of deformation and dynamic recrystallization in W9Mo3Cr4V steel different from those in low alloy steels.展开更多
The softening behavior of Inconel 718 alloy at different temperatures was studied using two- stage interrupted compression method on Gleeblel500D thermal stimulator, and the 2% offset method was applied to analyze the...The softening behavior of Inconel 718 alloy at different temperatures was studied using two- stage interrupted compression method on Gleeblel500D thermal stimulator, and the 2% offset method was applied to analyze the experimental dates. Finally, the static reerystallizafion fraction was obtained, At the same times, optical microscope (OM) and transmission electron microscopy (TEM) were employed to investigate the microstructure characteristic. The experimental results showed that the recrystallization was more sensitive to temperature than holding time. The reerystaUization process finished quickly above 1 050℃, and significantly prolonged below 1 025℃. Additionally, the dynamical model of static recrystallization follows the Avrami equation. The nucleating mechanism was characterized by bulging at grain boundary and merging of sub-grain.展开更多
In order to simulate the microstructure evolution during hot compressive deformation,models of dynamic recrystallization(DRX)by cellular automaton(CA)method for7055aluminum alloy were established.The hot compression t...In order to simulate the microstructure evolution during hot compressive deformation,models of dynamic recrystallization(DRX)by cellular automaton(CA)method for7055aluminum alloy were established.The hot compression tests were conducted toobtain material constants,and models of dislocation density,nucleation rate and recrystallized grain growth were fitted by leastsquare method.The effects of strain,strain rate,deformation temperature and initial grain size on microstructure variation werestudied.The results show that the DRX plays a vital role in grain refinement in hot deformation.Large strain,high temperature andsmall strain rate are beneficial to grain refinement.The stable size of recrystallized grain is not concerned with initial grain size,butdepends on strain rate and temperature.Kinetic characteristic of DRX process was analyzed.By comparison of simulated andexperimental flow stress–strain curves and metallographs,it is found that the established CA models can accurately predict themicrostructure evolution of7055aluminum alloy during hot compressive deformation.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52293395 and 52293393)the Xiongan Science and Technology Innovation Talent Project of MOST,China(No.2022XACX0500)。
文摘Understandings of the effect of hot deformation parameters close to the practical production line on grain refinement are crucial for enhancing both the strength and toughness of future rail steels.In this work,the austenite dynamic recrystallization(DRX)behaviors of a eutectoid pearlite rail steel were studied using a thermo-mechanical simulator with hot deformation parameters frequently employed in rail production lines.The single-pass hot deformation results reveal that the prior austenite grain sizes(PAGSs)for samples with different deformation reductions decrease initially with an increase in deformation temperature.However,once the deformation temperature is beyond a certain threshold,the PAGSs start to increase.It can be attributed to the rise in DRX volume fraction and the increase of DRX grain with deformation temperature,respectively.Three-pass hot deformation results show that the accumulated strain generated in the first and second deformation passes can increase the extent of DRX.In the case of complete DRX,PAGS is predominantly determined by the deformation temperature of the final pass.It suggests a strategic approach during industrial production where part of the deformation reduction in low temperature range can be shifted to the medium temperature range to release rolling mill loads.
基金the Deutsche Forschungsgemeinschaft(DFG)for financial support(MO 848/18-2)。
文摘The deformation mechanisms and dynamic recrystallization(DRX)behavior of specifically grown bicrystals with a symmetric 90°<1010>and 90°<1120>tilt grain boundary,respectively,were investigated under deformation in plane strain compression at 200℃and 400℃.The microstructures were analyzed by panoramic optical microscopy and large-area electron backscatter diffraction(EBSD)orientation mapping.The analysis employed a meticulous approach utilizing hundreds of individual,small EBSD maps with a small step size that were stitched together to provide comprehensive access to orientation and misorientation data on a macroscopic scale.Basal slip primarily governed the early stages of deformation at the two temperatures,and the resulting shear induced lattice rotation around the transverse direction(TD)of the sample.The existence of the grain boundary gave rise to dislocation pile-up in its vicinity,leading to much larger TD-lattice rotations within the boundary region compared to the bulk.With increasing temperature,the deformation was generally more uniform towards the bulk due to enhanced dislocation mobility and more uniform stress distribution.Dynamic recrystallization at 200℃was initiated in{1011}-compression twins at strains of 40%and higher.At 400℃,DRX consumed the entire grain boundary region and gradually replaced the deformed microstructure with progressing deformation.The recrystallized grains displayed characteristic orientations,such that their c-axes were perpendicular to the TD and additionally scattered between 0°and 60°from the loading axis.These recrystallized grains displayed mutual rotations of up to 30°around the c-axes of the initial grains,forming a discernible basal fiber texture component,prominently visible in the{1120}pole figure.It is noteworthy that the deformation and DRX behaviors of the two analyzed bicrystals exhibited marginal variations in response to strain and deformation temperature.
文摘The flow stress behavior of ZK60 alloy at elevated temperature was investigated. The strain hardening and dynamic recrystallization of the alloy were modeled by Kocks-Meching model and Avrami equation, respectively. A new constitutive equation during hot deformation was constructed to predict the flow stress considering the dynamic recrystallization. The results show that the flow stress curves predicted by the proposed equation have high correlation coefficients with the experimental data, which confirms that the developed model is accurate and effective to establish the flow stress equation of ZK60 magnesium alloy during hot deformation. Microstructure observation shows that dynamic recovery occurs in the initial stage of hot deformation. However, the microstructure turns to recrvstallization structure as the strain increases.
基金Project(51071056) supported by the National Natural Science Foundation of ChinaProjects(HEUCFR1132,HEUCF121712) supported by the Fundamental Research Funds for the Central Universities of China
文摘Mechanical behavior of nickel?titanium shape memory alloy(NiTi SMA) under hot deformation was investigated according to the true stress—strain curves of NiTi samples under compression at the strain rates of 0.001-1 s-1 and at the temperatures of 600?1000℃.Dynamic recovery and dynamic recrystallization of NiTi SMA were systematically investigated by microstructural evolution.The influence of the strain rates,the deformation temperatures and the deformation degree on the dynamic recovery and dynamic recrystallization of NiTi SMA was obtained as well.NiTi SMA was characterized by the combination of dynamic recovery and dynamic recrystallization at 600℃ and 700℃,but the complete dynamic recrystallization occurred at other deformation temperatures.Increasing the deformation temperatures or decreasing the stain rates leads to larger equiaxed grains.The deformation degree has an important influence on the dynamic recrystallization of NiTi SMA.There exists the critical deformation degree during the dynamic recrystallization of NiTi SMA,beyond which the larger deformation degree contributes to obtaining the finer equiaxed grains.
基金Project(2012CB619500)supported by the National Basic Research Program of China
文摘The dynamic recrystallization behavior of 7085 aluminum alloy during hot compression at various temperatures (573?723 K) and strain rates (0.01-10 s^-1) was studied by electron back scattered diffraction (EBSD), electro-probe microanalyzer (EPMA) and transmission electron microscopy (TEM). It is shown that dynamic recovery is the dominant softening mechanism at high Zener?Hollomon (Z) values, and dynamic recrystallization tends to appear at low Z values. Hot compression with ln Z=24.01 (723 K, 0.01 s?1) gives rise to the highest fraction of recrystallization of 10.2%. EBSD results show that the recrystallized grains are present near the original grain boundaries and exhibit similar orientation to the deformed grain. Strain-induced boundary migration is likely the mechanism for dynamic recrystallization. The low density of Al3Zr dispersoids near grain boundaries can make contribution to strain-induced boundary migration.
文摘The deformation and recrystallization textures of 6111 Al alloy with various precipitation states have been investigated by means of the orientation distribution functions (ODFs). It was found that the precipitation state had significant effects on both rolling and recrystallization textures of Al alloy. For the alloy with no or little precipitate, the orientation intensities were distributed more homogeneously along the β-fiber. With increasing aging temperature, the orientation intensities along the β-fiber increased firstly and decreased then. Simultaneity, the orientation intensities along the β-fiber were distributed more and more inhomogeneously. On the other hand, with the precipitates increasing the recrystallization textures changed gradually from {001}<UVW> and very weak {011}<111> orientation to the strong {001}<311> and {011}<111> orientation.
基金This research was supported by the National Nature Science Foundation of China(No.50071064).
文摘α-titanium and its alloys with a dual-phase structure (α+β) were deformed dynamically under strain rate of about 10^4 s^-1. The formation and microstructural evolution of the localized shear bands were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results reveal that both the strain and strain rate should be considered simultaneously as the mechanical conditions for shear band formation, and twinning is an important mode of deformation. Both experimental and calculation show that the materials within the bands underwent a superhigh strain rate (9×10^5 S^-1) deformation, which is two magnitudes of that of average strain rate required for shear band formation; the dislocations in the bands can be constricted and developed into cell structures; the phase transformation from α to α2 within the bands was observed, and the transformation products (α2) had a certain crystallographic orientation relationship with their parent; the equiaxed grains with an average size of 10 μm in diameter observed within the bands are proposed to be the results of recrystallization.
基金supported by the National Natural Science Foundation of China(Grant No.50075053).
文摘The isothermal single-stage compression of 35CrMo structural steel has been carried out by using Gleeble 1500 simulator at the temperature range of 950℃ to 1150℃ and strain rate range of 0.01s-1 to 10s-1. The effect of hot deformation parameters, such as strain rate, deformed temperature and initial grain size on the flow stress behavior was investigated. The activation energy of tested alloy was calculated, which is 378.16kJ/mol; The relationships between the peak stress (σp), the peak stain (εp), the critical strain (εc) and Z parameter were established. The micro structure evolution shows the pre-existing austenite grain boundaries constitute the principal nucleation sites for dynamic recrystallization (DRX), and the initial austenite grain size affects the grain size of DRX slightly. The kinetic mathematical model of DRX of 35CrMo is: XDRX=1-exp(-3.23-2.28) and Ddyn = 2.252× 10Z-0.22.
基金supported by the National "Eleventh Five-Year Plan" Key Technologies R&D Program (2006BAE04B01)
文摘The characteristics of dynamic recrystallization (DRX) in Mg-Y-Nd-Gd-Zr-RE magnesium alloy were investigated by compression tests at temperatures between 523 and 723 K and at strain rates ranging from 0.002 to 1 s^-1 with maximum strain of 0.693. The strainhardening rate can be obtained from true stress-true strain curves, plots of θ-σ, -(δθ/δσ-)-a and lnθ-σ in different compression conditions were obtained by further study. The critical condition of the onset of DRX process was determined as ((δ/δσ( δθ/δσ))=0. In the range of the above deformation temperature and strain rate, the ratio of critical stress (σc) to peak stress (σm) and critical strain (εc) to the peak strain (εm) stood at σc/σm=0.62-0.89 and εc/εm=0.11-0.37, respectively. DRX could be observed during hot detormation process, microstructure evolution of the magnesium alloy at different temperatures and strain rates were studied with the aid of optical microscope(OM), and the average recrystallized grain size was measured by means of intercepts on photomicrographs. It was shown that the average dynamically recrystallized grain size (drew) changed with different deformation parameters, the natural logarithm of the average recrystallized grain size varied linearly with the natural logarithm of Zener-Hollomon parameter; the peak stress changed with the average recrystallized grain size, and the natural logarithm of the average recrystallized grain size varied linearly with the natural logarithm of the peak stress.
文摘By using a cellular automaton method, microstructure evolution of recrystallization in austenite during hot deformation was simulated for C-Mn steels. A model takes into account the influence of deformation temperature, strain, and strain rate on the dynamic recrystallization fraction, and the effect of the keeping time on the static recrystallization fraction based on a hot deformation test on a Gleeble-1500 simulator. In addition, the size changing of γ grains during continuous hot deformation was simulated by applying the model.
基金Funded by the National Key R&D Program of China(Nos.2016YFB0300803,2016YFB0300903)the National Program of China(No.2012CB619504)
文摘To investigate the dynamic recrystallization behavior of 7xxx aluminum alloys,the isothermal compression tests were carried on the 7056 aluminum alloy in the temperatures range of 320-440℃and in the strain rates range of 0.001-1 s^(-1).In addition,the microstructure of samples were observed via electron back scanning diffraction microscope.According to the results,true stress and true strain curves were established and an Arrhenius-type equation was established,showing the flow stress increases with the temperature decreasing and the strain rate increasing.The critical strain(ε_(c))and the critical stress(σ_(c))of the onset of dynamic recrystallization were identified via the strain hardening rate and constructed relationship between deformation parameters as follows:ε_(c)=6.71×10^(-4)Z^(0.1373) and σ_(p)=1.202σ_(c)+12.691.The DRX is incomplete in this alloy,whose volume fraction is only 20%even if the strain reaches 0.9.Through this study,the flow stress behavior and DRX behavior of 7056 aluminum alloys are deeply understood,which gives benefit to control the hot working process.
基金Project(51405110)supported by the National Natural Science Foundation of ChinaProject(20132302120002)supported by the Specialized Research Fund for the Doctoral Program of Higher Education,ChinaProject(LBH-Z14096)supported by Heilongjiang Province Postdoctoral Fund,China
文摘The deformation behavior of V-10Cr-5Ti alloy was studied on the Gleeble-1500 thermomechanical simulator at the temperatures of 950-1350℃, and the strain rates of 0.01-10 s^-1. Based on the Arrhenius model, dislocation density model, nucleation model and grain growth model, a numerical cellular automaton (CA) model coupling simulation of hot deformation is established to simulate and characterize the microstructural evolution during DRX. The results show that the flow stress is fairly sensitive to the strain rate and deformation temperature. The error between the predicted stress by the Arrhenius model and the actual measured value is less than 8%. The initial average grain size calculated by the CA model is 86.25 μm, which is close to the experimental result (85.63 μm). The simulations show that the effect of initial grain size on the dynamic recrystallization microstructure evolution is not significant, while increasing the strain rate or reducing the temperature can refine the recrystallized grains.
基金Project(101048) supported by Fok Ying Tung Education FoundationProject(E2008000835) supported by the Natural Science Foundation of Hebei Province,China
文摘Based on the steady-state strain measured by single-pass hot compression tests,the method by a double-pass hot compression testing was developed to measure the metadynamic-recrystallization kinetics.The metadynamic recrystallization behavior of low-alloy steel Q345B during hot compression deformation was investigated in the temperature range of 1 000-1 100℃,the strain rate range of 0.01-0.10 s -1 and the interpass time range of 0.5-50 s on a Gleeble-3500 thermo-simulation machine.The results show that metadynamic recrystallization during the interpass time can be observed.As the deformation temperature and strain rate increase,softening caused by metadynamic recrystallization is obvious.According to the data of thermo-simulation,the metadynamic recrystallization activation energy is obtained to be Qmd=100.674 kJ/mol and metadynamic recrystallization kinetics model is set up.Finally,the error analysis of metadynamic recrystallization kinetics model proves that the model has high accuracy(correlation coefficient R=0.988 6).
基金National Natural Science Foundation of China(No.51261009)
文摘The hot deformation behavior of a Nb microalloyed anti-seismic rebar was investigated at deformation temperatures of 950-1 100 ℃ and strain rates of 0. 01-0. 1 s- 1 on a Gleeble-3800 thermo-mechnical simulator. The flow stress-strain curves show the typical dynamic recrystallization with a peak,before reaching the steady state flow at higher deformation temperatures and lower strain rates. The constitutive equation governing the dynamic recrystallization( DRX) was obtained and the average activation energy of deformation was calculated as Q = 389. 5 kJ / mol by the regression analysis. The DRX grain size was also found to decrease with the increasing strain rate and the decreasing deformation temperature. The austenite grain size was refined from 118. 0 μm to 15. 07-40. 01 μm by DRX. The DRX grain size under diverse deformation conditions predicted by mathematical model agrees well with experimental results.
文摘Recrystallized grains, less than 200 nm in diameter were observed in heavily shear zones of a high strength low alloy steel and a Ni-based alloy, and Also grain refinement, less than 3 μm in diameter was made in high purity aluminum by ECAE at ambient temperature. The experimental results showed that high strain rate and large deformation could induce dynamic recrystallization.Based on dislocation dynamics and grain orientation change enhanced by plastic deformation,a model for the recrystallization process is developed. The model is used to explain the ultra fine grains which are formed at a temperature still much lower than that for the conventional recrystallization
文摘The dynamic recrystallization(DRX) and texture development, taking place during hot deformation of magnesium alloy AZ31 with a strong wire texture, were studied in compression at 673 K (0.73 Tm). Two kinds of samples were machined parallelly to the extruded and transverse directions of Mg alloy rods. New fine grains are evolved at original grain boundaries corrugated at low strains and develop rapidly in the medium range of strain, finally leading to a roughly full evolution of equiaxial fine grains. Kink bands are evolved at grain boundaries corrugated and also frequently in grain interiors at low strains. The boundary misorientations of kink band increase rapidly with increasing strain and approach a saturation value in high strain. The average size of the regions fragmented by kink band is almost the same as that of new grains evolved in high strain. These characteristics of new grain evolution process are not changed by the orientation of the samples, while the flow behaviors clearly depend on it. It is concluded that new grain evolution can be controlled by a deformation-induced continuous reaction, i.e. continuous dynamic recrystallization(DRX). The latter is discussed by comparing with conventional, i.e. discontinuous DRX.
文摘In this paper, the recrystallization behavior of steel 9Gr- 1Mo - V-Wb - N at high temperature was studied using Gleeble - 1500 thermalmechanical simulator.The critical conditions of occurrence of dy- namic recrystallization during hot deformation were obtained,and by means of double hit testing with an inter -hit time, the metabynamic recrystallization between rolling passes and its effect factors were also imitated.Additionally,the deformation activation energy of T91 steel,the relationship between critical stress,strain, temperature, and strain rate were regressed respectively, the results were sati- sfied.
文摘The behavior of high temperature deformation and recrystallization of W9Mo3Cr4V steel have been studied in this paper. Dynamic precipitation during deformation has also been investigated. In W9Mo3Cr4V steel, stress strain curves exhibit many features. The deformation structures and the effects of deformation parameters on dynamic recrystallization are more complicated than those in low alloy steels. For W9Mo3Cr4V steel, there is a large number of residual carbides on the matrix at high temperature. Also, many second carbides precipitate from the matrix during high temperature deformation. These two kinds of carbides (especially the latter) make the behavior of deformation and dynamic recrystallization in W9Mo3Cr4V steel different from those in low alloy steels. ABSTRACT:The behavior of high temperature deformation and recrystallization of W9Mo3Cr4V steel have been studied in this paper. Dynamic precipitation during deformation has also been investigated. In W9Mo3Cr4V steel, stress strain curves exhibit many features. The deformation structures and the effects of deformation parameters on dynamic recrystallization are more complicated than those in low alloy steels. For W9Mo3Cr4V steel, there is a large number of residual carbides on the matrix at high temperature. Also, many second carbides precipitate from the matrix during high temperature deformation. These two kinds of carbides (especially the latter) make the behavior of deformation and dynamic recrystallization in W9Mo3Cr4V steel different from those in low alloy steels.
文摘The softening behavior of Inconel 718 alloy at different temperatures was studied using two- stage interrupted compression method on Gleeblel500D thermal stimulator, and the 2% offset method was applied to analyze the experimental dates. Finally, the static reerystallizafion fraction was obtained, At the same times, optical microscope (OM) and transmission electron microscopy (TEM) were employed to investigate the microstructure characteristic. The experimental results showed that the recrystallization was more sensitive to temperature than holding time. The reerystaUization process finished quickly above 1 050℃, and significantly prolonged below 1 025℃. Additionally, the dynamical model of static recrystallization follows the Avrami equation. The nucleating mechanism was characterized by bulging at grain boundary and merging of sub-grain.
基金Projects(51175257,51405520) supported by the National Natural Science Foundation of China
文摘In order to simulate the microstructure evolution during hot compressive deformation,models of dynamic recrystallization(DRX)by cellular automaton(CA)method for7055aluminum alloy were established.The hot compression tests were conducted toobtain material constants,and models of dislocation density,nucleation rate and recrystallized grain growth were fitted by leastsquare method.The effects of strain,strain rate,deformation temperature and initial grain size on microstructure variation werestudied.The results show that the DRX plays a vital role in grain refinement in hot deformation.Large strain,high temperature andsmall strain rate are beneficial to grain refinement.The stable size of recrystallized grain is not concerned with initial grain size,butdepends on strain rate and temperature.Kinetic characteristic of DRX process was analyzed.By comparison of simulated andexperimental flow stress–strain curves and metallographs,it is found that the established CA models can accurately predict themicrostructure evolution of7055aluminum alloy during hot compressive deformation.