期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effect of hydraulic fracture deformation hysteresis on CO_(2)huff-n-puff performance in shale gas reservoirs
1
作者 Xia YAN Pi-yang LIU +4 位作者 Zhao-qin HUANG Hai SUN Kai ZHANG Jun-feng WANG Jun YAO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2023年第1期37-55,共19页
As a promising enhanced gas recovery technique,CO_(2)huff-n-puff has attracted great attention recently.However,hydraulic fracture deformation hysteresis is rarely considered,and its effect on CO_(2)huff-n-puff perfor... As a promising enhanced gas recovery technique,CO_(2)huff-n-puff has attracted great attention recently.However,hydraulic fracture deformation hysteresis is rarely considered,and its effect on CO_(2)huff-n-puff performance is not well understood.In this study,we present a fully coupled multi-component flow and geomechanics model for simulating CO_(2)huff-n-puff in shale gas reservoirs considering hydraulic fracture deformation hysteresis.Specifically,a shale gas reservoir after hydraulic fracturing is modeled using an efficient hybrid model incorporating an embedded discrete fracture model(EDFM),multiple porosity model,and single porosity model.In flow equations,Fick’s law,extended Langmuir isotherms,and the Peng-Robinson equation of state are used to describe the molecular diffusion,multi-component adsorption,and gas properties,respectively.In relation to geomechanics,a path-dependent constitutive law is applied for the hydraulic fracture deformation hysteresis.The finite volume method(FVM)and the stabilized extended finite element method(XFEM)are applied to discretize the flow and geomechanics equations,respectively.We then solve the coupled model using the fixed-stress split iterative method.Finally,we verify the presented method using several numerical examples,and apply it to investigate the effect of hydraulic fracture deformation hysteresis on CO_(2)huff-n-puff performance in a 3D shale gas reservoir.Numerical results show that hydraulic fracture deformation hysteresis has some negative effects on CO_(2)huff-n-puff performance.The effects are sensitive to the initial conductivity of hydraulic fracture,production pressure,starting time of huff-n-puff,injection pressure,and huff-n-puff cycle number. 展开更多
关键词 Enhanced gas recovery CO_(2)huff-n-puff Coupled geomechanics and multi-component flow Hydraulic fracture deformation hysteresis Embedded discrete fracture model(EDFM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部