At room temperature,dry sliding wear tests were carried out using pin-on-disc test rig,in which the pin is made of vermicular iron and the disc is made of 40 Cr steel.The microstructures of the frictional surfaces for...At room temperature,dry sliding wear tests were carried out using pin-on-disc test rig,in which the pin is made of vermicular iron and the disc is made of 40 Cr steel.The microstructures of the frictional surfaces for the pin specimens were investigated.Under the action of both frictional heat and frictional shearing stress,aplastic deformation layer under the frictional surface is formed.The morphology and properties of the plastic deformation layer depend on specimen material,contact pressure and frictional shearing stress.In the plastic deformation layer,the phosphorous mass percent varies at different depth and results in different hardness.On the outer side of surface,the hardness is the biggest and the phosphorous mass percent is the highest.They become gradually small from outer side to inner side of the surface.展开更多
Unlike the magma intrusion model,the in- situ melting hypothesis advanced in the lastdecade regards the upper crustas a closed system,and granite as the resultof the materialswithin system changing from order (protoli...Unlike the magma intrusion model,the in- situ melting hypothesis advanced in the lastdecade regards the upper crustas a closed system,and granite as the resultof the materialswithin system changing from order (protolith) to disorder (melts) and to new order(granite) with the variations of entropy of the system.The various geological and geochemi-cal data from the Mesozoic granitesof southeast China are explained logically and systemical-ly by the hypothesis,concluding that they should be originated from the melting of pro-toliths.According to the hypothesis,melts generated from in- situ melting are of layer- likewithin the crustand batholithsare the protruding parts of the uppersurface of the layer (de-fined as the Melting Interface,MI for short) .On the basis the author tries to discuss thesource of heatfor the Mesozoic crustal melting in southeast China.展开更多
A new B-spline surface reconstruction method from layer data based on deformable model is presented. An initial deformable surface, which is represented as a closed cylinder, is firstly given. The surface is subject t...A new B-spline surface reconstruction method from layer data based on deformable model is presented. An initial deformable surface, which is represented as a closed cylinder, is firstly given. The surface is subject to internal forces describing its implicit smoothness property and external forces attracting it toward the layer data points. And then finite element method is adopted to solve its energy minimization problem, which results a bicubic closed B-spline surface with C^2 continuity. The proposed method can provide a smoothness and accurate surface model directly from the layer data, without the need to fit cross-sectional curves and make them compatible. The feasibility of the proposed method is verified by the experimental results.展开更多
The microstructure and the filiform corrosion behaviour of machined AA7150 aluminium alloy were investigated using scanning and transmission electron microscopies combined with potentiodynamic polarization and filifor...The microstructure and the filiform corrosion behaviour of machined AA7150 aluminium alloy were investigated using scanning and transmission electron microscopies combined with potentiodynamic polarization and filiform corrosion testing,respectively.It is found that the grain refinement,redistribution of alloying elements,and elements segregation at grain boundaries are evident within the near-surface region on the machined AA7150 aluminium alloy.The corrosion susceptibility of machining introduced near-surface deformed layer is significantly improved caused by the modified microstructure associated with severe deformation.Filiform corrosion resistance on the machined surface is obviously decreased,due to the surface roughness associated with machining tracks and the presence of the electrochemically more active near-surface deformed layer introduced by machining.展开更多
The relationship between the Yanshanian Movement, destruction of the North China Craton(NCC), and subduction of the western Pacific plate is crucial to reconstructing the middle-late Mesozoic tectonic evolution of the...The relationship between the Yanshanian Movement, destruction of the North China Craton(NCC), and subduction of the western Pacific plate is crucial to reconstructing the middle-late Mesozoic tectonic evolution of the eastern Asian continent and margin. The Yanshanian Movement was a globally important change in crustal tectonics during the Middle-Late Jurassic.Previous research has systematically studied the formation and evolution of the Yanshanian Movement, focusing on the timing and location of tectonic movements, and the sedimentary and volcanic strata. However, the question of whether the tectonic activity occurred globally, and the characteristics of the Yanshanian Movement remain debated. The main argument is that if a tectonic movement can only be characterized by a regional or local disconformity, and if the tectonic movement occurred in an intracontinental setting, with extensive deformation but with no disconformity despite volcanic eruptions and magmatic intrusions, accompanied by changes in crustal structure and composition, should it be defined as a tectonic event or process? This question requires further analysis. The main aim of this study is to distinguish whether the Yanshanian Movement is a local feature of the eastern Asian continent, or a global tectonic event related to subduction of the Pacific Plate. In this paper, based on previous research, we discuss the spatial and temporal evolution of the Yanshanian Movement, the controlling tectonic mechanisms, and its relationship to the reactivation and destruction of the NCC and the subduction of the western Paleo-Pacific slab.We emphasize that the Yanshanian Movement in the Middle-Late Jurassic is distinct from the lithospheric thinning responsible for Early Cretaceous extension and magmatism related to the destruction of the NCC. The various tectonic stages were constrained by different dynamics and tectonic settings, or by different tectonic events and processes. Therefore, it is possible that the deformation and reactivation of the NCC contributed to its destruction, in addition to lithospheric thinning. Finally, we discuss whether the Yanshanian Movement was associated with the destruction of the NCC.展开更多
Ultrasonic vibration-assisted technology is widely utilized in the performance research and manufacturing process of metallic materials owing to its advantages of introducing highfrequency acoustic systems. However, t...Ultrasonic vibration-assisted technology is widely utilized in the performance research and manufacturing process of metallic materials owing to its advantages of introducing highfrequency acoustic systems. However, the acoustic plasticity constitutive model and potential mechanism, involving Ti3Al intermetallic compounds, have not yet been clarified. Therefore, the Ultrasonic-K-M hybrid acoustic constitutive model of Ti3Al was established by considering the stress superposition, acoustic thermal softening, acoustic softening and acoustic residual hardening effects according to the dislocation density evolution theory and crystal plasticity theory. Meanwhile, the mechanical behavior of ultrasonic vibration-assisted tension(UVAT) and microstructure of ultrasonic vibration-assisted milling(UVAM) for Ti3Al was investigated. Dislocation density to be overcome from initial deformation to failure of Ti3Al was calculated in UVAT and was verified in UVAM. The results indicated that the Ultrasonic-K-M model showed a good agreement with the experimental data. There was an obviously softening phenomenon after introducing the ultrasonic energy field in the Ti3Al whole deformation region, and the degree of softening was positively correlated with amplitude. Furthermore, the maximum reduction ratio in yield strength of Ti3Al was16 % and the maximum reduction value in ultimate tensile strength was 206.91 MPa. The elongation rose first and then fell as amplitude enlarged, but only as the vibration was applied in the whole deformation region, the elongation was always greater than 14.58 %. In addition, The UVAM process significantly reduced the dislocation density increment to be overcome for Ti3Al material removal by 1.37 times, and promoted dislocation motion and cancellation to make twisted dislocations evolve into parallel dislocations. As the amplitude increased to 4 μm, the depth of the disturbed area of the plastic deformation layer increased by a maximum of 2.5 times.展开更多
The Paleogene geological framework and evolution process in the central anticline zone in the Lufeng 13 sag in Pearl River Mouth Basin is well analyzed through seismic data and drilling data,and control of tectonic ev...The Paleogene geological framework and evolution process in the central anticline zone in the Lufeng 13 sag in Pearl River Mouth Basin is well analyzed through seismic data and drilling data,and control of tectonic evolution on hydrocarbon accumulation is also discussed.The results show that the central anticline zone in the Lufeng 13 sag develops the upper deformation layer and lower deformation layer.The“arched graben system”is developed in the upper deformation layer,and the magmatic diapir structure and flowing deformation of plastic strata is developed in the lower deformation layer.The evolution process of the central anticline zone can be divided into four stages,i.e.fault block uplifting stage,prototype stage,strengthening stage and finalization stage.The geological framework and tectonic evolution of the central anticline zone control Paleogene hydrocarbon accumulation.The Paleogene twolayer geological framework is favorable for development of structural traps and composite traps;the paleostructure highs are the direction of hydrocarbon migration,and the gravitational gliding faults are the main carrier bed for vertical hydrocarbon migration;the tectonic uplift is a key factor for reservoir diagenesis improvement and preservation of primary pores,and also controls distribution of high-quality reservoirs.展开更多
Based on the geothermal and gravitation methods, this paper investigated the rheological and thermal structure of the lithosphere under the northern margin of South China Sea. The result shows that the temperature of ...Based on the geothermal and gravitation methods, this paper investigated the rheological and thermal structure of the lithosphere under the northern margin of South China Sea. The result shows that the temperature of the upper crust is 150–300°C lower than that of the lower crust, and the viscous coefficient of the upper crust is 2–3 orders of magnitude larger than that of the lower crust. It reveals that the upper crust is characterized by brittle deformation while the lower crust by ductile deformation. A channel of lower-viscosity should be formed between the upper and lower crust when the lithosphere is scattered and spreads out toward ocean from northwest to southeast along the northern margin of South China Sea. And, a brittle deformation takes place in the upper part of the lithosphere while a ductile deformation takes place in the lower part of the lithosphere due to different viscous coefficients and temperature. The layered deformation leads the faulted blocks to rotate along the faulting and the marginal grabens to appear in the northern margin of South China Sea in Cenozoic tectonic expansion.展开更多
Space-time video super-resolution(STVSR)serves the purpose to reconstruct high-resolution high-frame-rate videos from their low-resolution low-frame-rate counterparts.Recent approaches utilize end-to-end deep learning...Space-time video super-resolution(STVSR)serves the purpose to reconstruct high-resolution high-frame-rate videos from their low-resolution low-frame-rate counterparts.Recent approaches utilize end-to-end deep learning models to achieve STVSR.They first interpolate intermediate frame features between given frames,then perform local and global refinement among the feature sequence,and finally increase the spatial resolutions of these features.However,in the most important feature interpolation phase,they only capture spatial-temporal information from the most adjacent frame features,ignoring modelling long-term spatial-temporal correlations between multiple neighbouring frames to restore variable-speed object movements and maintain long-term motion continuity.In this paper,we propose a novel long-term temporal feature aggregation network(LTFA-Net)for STVSR.Specifically,we design a long-term mixture of experts(LTMoE)module for feature interpolation.LTMoE contains multiple experts to extract mutual and complementary spatial-temporal information from multiple consecutive adjacent frame features,which are then combined with different weights to obtain interpolation results using several gating nets.Next,we perform local and global feature refinement using the Locally-temporal Feature Comparison(LFC)module and bidirectional deformable ConvLSTM layer,respectively.Experimental results on two standard benchmarks,Adobe240 and GoPro,indicate the effectiveness and superiority of our approach over state of the art.展开更多
基金Item Sponsored by Provincial Outstanding Youth Science Foundation of Henan in China(04120002100)Opening Foundationof State Key Laboratory of Solid Lubrication
文摘At room temperature,dry sliding wear tests were carried out using pin-on-disc test rig,in which the pin is made of vermicular iron and the disc is made of 40 Cr steel.The microstructures of the frictional surfaces for the pin specimens were investigated.Under the action of both frictional heat and frictional shearing stress,aplastic deformation layer under the frictional surface is formed.The morphology and properties of the plastic deformation layer depend on specimen material,contact pressure and frictional shearing stress.In the plastic deformation layer,the phosphorous mass percent varies at different depth and results in different hardness.On the outer side of surface,the hardness is the biggest and the phosphorous mass percent is the highest.They become gradually small from outer side to inner side of the surface.
文摘Unlike the magma intrusion model,the in- situ melting hypothesis advanced in the lastdecade regards the upper crustas a closed system,and granite as the resultof the materialswithin system changing from order (protolith) to disorder (melts) and to new order(granite) with the variations of entropy of the system.The various geological and geochemi-cal data from the Mesozoic granitesof southeast China are explained logically and systemical-ly by the hypothesis,concluding that they should be originated from the melting of pro-toliths.According to the hypothesis,melts generated from in- situ melting are of layer- likewithin the crustand batholithsare the protruding parts of the uppersurface of the layer (de-fined as the Melting Interface,MI for short) .On the basis the author tries to discuss thesource of heatfor the Mesozoic crustal melting in southeast China.
基金This project is supported by National Natural Science Foundation of China(No. 10272033) and Provincial Natural Science Foundation of Guangdong,China(No.04105385).
文摘A new B-spline surface reconstruction method from layer data based on deformable model is presented. An initial deformable surface, which is represented as a closed cylinder, is firstly given. The surface is subject to internal forces describing its implicit smoothness property and external forces attracting it toward the layer data points. And then finite element method is adopted to solve its energy minimization problem, which results a bicubic closed B-spline surface with C^2 continuity. The proposed method can provide a smoothness and accurate surface model directly from the layer data, without the need to fit cross-sectional curves and make them compatible. The feasibility of the proposed method is verified by the experimental results.
基金Project(EP/R001715/1)supported by the UK Engineering and Physical Sciences Research Council。
文摘The microstructure and the filiform corrosion behaviour of machined AA7150 aluminium alloy were investigated using scanning and transmission electron microscopies combined with potentiodynamic polarization and filiform corrosion testing,respectively.It is found that the grain refinement,redistribution of alloying elements,and elements segregation at grain boundaries are evident within the near-surface region on the machined AA7150 aluminium alloy.The corrosion susceptibility of machining introduced near-surface deformed layer is significantly improved caused by the modified microstructure associated with severe deformation.Filiform corrosion resistance on the machined surface is obviously decreased,due to the surface roughness associated with machining tracks and the presence of the electrochemically more active near-surface deformed layer introduced by machining.
基金supported by the National Natural Science Foundation of China (Grant No. 90914004)
文摘The relationship between the Yanshanian Movement, destruction of the North China Craton(NCC), and subduction of the western Pacific plate is crucial to reconstructing the middle-late Mesozoic tectonic evolution of the eastern Asian continent and margin. The Yanshanian Movement was a globally important change in crustal tectonics during the Middle-Late Jurassic.Previous research has systematically studied the formation and evolution of the Yanshanian Movement, focusing on the timing and location of tectonic movements, and the sedimentary and volcanic strata. However, the question of whether the tectonic activity occurred globally, and the characteristics of the Yanshanian Movement remain debated. The main argument is that if a tectonic movement can only be characterized by a regional or local disconformity, and if the tectonic movement occurred in an intracontinental setting, with extensive deformation but with no disconformity despite volcanic eruptions and magmatic intrusions, accompanied by changes in crustal structure and composition, should it be defined as a tectonic event or process? This question requires further analysis. The main aim of this study is to distinguish whether the Yanshanian Movement is a local feature of the eastern Asian continent, or a global tectonic event related to subduction of the Pacific Plate. In this paper, based on previous research, we discuss the spatial and temporal evolution of the Yanshanian Movement, the controlling tectonic mechanisms, and its relationship to the reactivation and destruction of the NCC and the subduction of the western Paleo-Pacific slab.We emphasize that the Yanshanian Movement in the Middle-Late Jurassic is distinct from the lithospheric thinning responsible for Early Cretaceous extension and magmatism related to the destruction of the NCC. The various tectonic stages were constrained by different dynamics and tectonic settings, or by different tectonic events and processes. Therefore, it is possible that the deformation and reactivation of the NCC contributed to its destruction, in addition to lithospheric thinning. Finally, we discuss whether the Yanshanian Movement was associated with the destruction of the NCC.
基金supported by the National Natural Science Foundation of China(Nos.51875179 and 52275419).
文摘Ultrasonic vibration-assisted technology is widely utilized in the performance research and manufacturing process of metallic materials owing to its advantages of introducing highfrequency acoustic systems. However, the acoustic plasticity constitutive model and potential mechanism, involving Ti3Al intermetallic compounds, have not yet been clarified. Therefore, the Ultrasonic-K-M hybrid acoustic constitutive model of Ti3Al was established by considering the stress superposition, acoustic thermal softening, acoustic softening and acoustic residual hardening effects according to the dislocation density evolution theory and crystal plasticity theory. Meanwhile, the mechanical behavior of ultrasonic vibration-assisted tension(UVAT) and microstructure of ultrasonic vibration-assisted milling(UVAM) for Ti3Al was investigated. Dislocation density to be overcome from initial deformation to failure of Ti3Al was calculated in UVAT and was verified in UVAM. The results indicated that the Ultrasonic-K-M model showed a good agreement with the experimental data. There was an obviously softening phenomenon after introducing the ultrasonic energy field in the Ti3Al whole deformation region, and the degree of softening was positively correlated with amplitude. Furthermore, the maximum reduction ratio in yield strength of Ti3Al was16 % and the maximum reduction value in ultimate tensile strength was 206.91 MPa. The elongation rose first and then fell as amplitude enlarged, but only as the vibration was applied in the whole deformation region, the elongation was always greater than 14.58 %. In addition, The UVAM process significantly reduced the dislocation density increment to be overcome for Ti3Al material removal by 1.37 times, and promoted dislocation motion and cancellation to make twisted dislocations evolve into parallel dislocations. As the amplitude increased to 4 μm, the depth of the disturbed area of the plastic deformation layer increased by a maximum of 2.5 times.
基金supported by the National Science and Technology Major Project of China(No.2016ZX05024-004)comprehensive scientific research project of CNOOC(China National Offshore Oil Corporation)(YXKY-2015-SZ-02).
文摘The Paleogene geological framework and evolution process in the central anticline zone in the Lufeng 13 sag in Pearl River Mouth Basin is well analyzed through seismic data and drilling data,and control of tectonic evolution on hydrocarbon accumulation is also discussed.The results show that the central anticline zone in the Lufeng 13 sag develops the upper deformation layer and lower deformation layer.The“arched graben system”is developed in the upper deformation layer,and the magmatic diapir structure and flowing deformation of plastic strata is developed in the lower deformation layer.The evolution process of the central anticline zone can be divided into four stages,i.e.fault block uplifting stage,prototype stage,strengthening stage and finalization stage.The geological framework and tectonic evolution of the central anticline zone control Paleogene hydrocarbon accumulation.The Paleogene twolayer geological framework is favorable for development of structural traps and composite traps;the paleostructure highs are the direction of hydrocarbon migration,and the gravitational gliding faults are the main carrier bed for vertical hydrocarbon migration;the tectonic uplift is a key factor for reservoir diagenesis improvement and preservation of primary pores,and also controls distribution of high-quality reservoirs.
基金the National Natural Science Foundation of China (Grant Nos.49732005, 49733011) and the Chinese Academy of Sciences (Grant No. KZ951-A1-401). We wish to thank Prof. Xu Houze and Lu Yang for their contribution in gravitational model. The authors also than
文摘Based on the geothermal and gravitation methods, this paper investigated the rheological and thermal structure of the lithosphere under the northern margin of South China Sea. The result shows that the temperature of the upper crust is 150–300°C lower than that of the lower crust, and the viscous coefficient of the upper crust is 2–3 orders of magnitude larger than that of the lower crust. It reveals that the upper crust is characterized by brittle deformation while the lower crust by ductile deformation. A channel of lower-viscosity should be formed between the upper and lower crust when the lithosphere is scattered and spreads out toward ocean from northwest to southeast along the northern margin of South China Sea. And, a brittle deformation takes place in the upper part of the lithosphere while a ductile deformation takes place in the lower part of the lithosphere due to different viscous coefficients and temperature. The layered deformation leads the faulted blocks to rotate along the faulting and the marginal grabens to appear in the northern margin of South China Sea in Cenozoic tectonic expansion.
文摘Space-time video super-resolution(STVSR)serves the purpose to reconstruct high-resolution high-frame-rate videos from their low-resolution low-frame-rate counterparts.Recent approaches utilize end-to-end deep learning models to achieve STVSR.They first interpolate intermediate frame features between given frames,then perform local and global refinement among the feature sequence,and finally increase the spatial resolutions of these features.However,in the most important feature interpolation phase,they only capture spatial-temporal information from the most adjacent frame features,ignoring modelling long-term spatial-temporal correlations between multiple neighbouring frames to restore variable-speed object movements and maintain long-term motion continuity.In this paper,we propose a novel long-term temporal feature aggregation network(LTFA-Net)for STVSR.Specifically,we design a long-term mixture of experts(LTMoE)module for feature interpolation.LTMoE contains multiple experts to extract mutual and complementary spatial-temporal information from multiple consecutive adjacent frame features,which are then combined with different weights to obtain interpolation results using several gating nets.Next,we perform local and global feature refinement using the Locally-temporal Feature Comparison(LFC)module and bidirectional deformable ConvLSTM layer,respectively.Experimental results on two standard benchmarks,Adobe240 and GoPro,indicate the effectiveness and superiority of our approach over state of the art.