To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at dif...To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at different temperatures T and strain ratesε were systematically studied through compression tests and microscopic observations. The increase in ε eliminates strain softening at T≤473 K, and largely enhances the yield strength and flow stress at 473?573 K. The shear deformation dominates the plastic deformation of ECAP-treated Al. Many cracks along shear bands (SBs) are formed at T≥473 K and secondary SBs basically disappear at 1×10?3 s?1; however, at 1×10?2 s?1, cracks are only observed at temperature below 473 K, and secondary SBs become clearer at T≥473 K. The microstructures of ECAP-treated Al mainly consist of sub-grains (SGs). The increase in ε inhibits the SG growth, thus leading to the increases both in yield strength and flow stress at high temperatures.展开更多
This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy ...This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy inequality and the representation theorem for thermoviscoelastic solids (TVES) with rheology. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics and are based on contravariant deviatoric second Piola-Kirchhoff stress tensor and its work conjugate covariant Green’s strain tensor and their material derivatives of up to order m and n respectively. All published works on nonlinear dynamics of TVES with rheology are mostly based on phenomenological mathematical models. In rare instances, some aspects of CBL are used but are incorrectly altered to obtain mass, stiffness and damping matrices using space-time decoupled approaches. In the work presented in this paper, we show that this is not possible using CBL of CCM for TVES with rheology. Thus, the mathematical models used currently in the published works are not the correct description of the physics of nonlinear dynamics of TVES with rheology. The mathematical model used in the present work is strictly based on the CBL of CCM and is thermodynamically and mathematically consistent and the space-time coupled finite element methodology used in this work is unconditionally stable and provides solutions with desired accuracy and is ideally suited for nonlinear dynamics of TVES with memory. The work in this paper is the first presentation of a mathematical model strictly based on CBL of CCM and the solution of the mathematical model is obtained using unconditionally stable space-time coupled computational methodology that provides control over the errors in the evolution. Both space-time coupled and space-time decoupled finite element formulations are considered for obtaining solutions of the IVPs described by the mathematical model and are presented in the paper. Factors or the physics influencing dynamic response and dynamic bifurcation for TVES with rheology are identified and are also demonstrated through model problem studies. A simple model problem consisting of a rod (1D) of TVES material with memory fixed at one end and subjected to harmonic excitation at the other end is considered to study nonlinear dynamics of TVES with rheology, frequency response as well as dynamic bifurcation phenomenon.展开更多
The link between the crustal deformation and mantle kinematics in the Tibetan Plateau has been well known thanks to dense GPS measurements and the relatively detailed anisotropy structure of the lithospheric mantle.Ho...The link between the crustal deformation and mantle kinematics in the Tibetan Plateau has been well known thanks to dense GPS measurements and the relatively detailed anisotropy structure of the lithospheric mantle.However, whether the crust deforms coherently with the upper mantle in the Shan-Thai terrane(also known as the Shan-Thai block) remains unclear.In this study, we investigate the deformation patterns through strain rate tensors in the southeastern Tibetan Plateau derived from the latest GPS measurements and find that in the Shan-Thai terrane the upper crust may be coupled with the lower crust and the upper mantle.The GPS-derived strain rate tensors are in agreement with the slipping patterns and rates of major strike-slip faults in the region.The most prominent shear zone, whose shear strain rates are larger than 100×10^(–9) a^(–1), is about 1000-km-long in the west, trending northward along Sagaing fault to the Eastern Himalayan Syntaxis in the north, with maximum rate of compressive strain up to –240×10^(–9) a^(–1).A secondary shear zone along the Anninghe-Xiaojiang Fault in the east shows segmented shear zones near several conjunctions.While the strain rate along RRF is relatively low due to the low slip rate and low seismicity there, in Lijiang and Tengchong several local shear zones are present under an extensional dominated stress regime that is related to normal faulting earthquakes and volcanism, respectively.Furthermore, by comparing GPS-derived strain rate tensors with earthquake focal mechanisms, we find that 75.8%(100 out of 132) of the earthquake T-axes are consistent with the GPS-derived strain rates.Moreover, we find that the Fast Velocity Direction(FVDs) at three depths beneath the Shan-Thai terrane are consistent with extensional strain rate with gradually increasing angular differences, which are likely resulting from the basal shear forces induced by asthenospheric flow associated with the oblique subduction of the India plate beneath the Shan-Thai terrane.Therefore, in this region the upper crust deformation may be coherent with that of the lower crust and the lithospheric mantle.展开更多
Lotus-type porous copper was fabricated by unidirectional solidification, and compressive experiments were subsequently conducted in the strain rate range of 10-3-2400 s-1 with the compressive direction parallel to th...Lotus-type porous copper was fabricated by unidirectional solidification, and compressive experiments were subsequently conducted in the strain rate range of 10-3-2400 s-1 with the compressive direction parallel to the pores. A GLEEBLE-1500 thermal-mechanical simulation system and a split Hopkinson pressure bar (SHPB) were used to investigate the effect of strain rate on the compressive deforma-tion behaviors of lotus-type porous copper. The influence mechanism of strain rate was also analyzed by the strain-controlling method and by high-speed photography. The results indicated that the stress-strain curves of lotus-typed porous copper consist of a linear elastic stage, a plateau stage, and a densification stage at various strain rates. At low strain rate (〈1.0 s^-1), the strain rate had little influence on the stress-strain curves; but when the strain rate exceeded 1.0 s^-1, it was observed to strongly affect the plateau stage, showing obvious strain-rate-hardening characteristics. Strain rate also influenced the densification initial strain. The densification initial strain at high strain rate was less than that at low strain rate. No visible inhomogeneous deformation caused by shockwaves was observed in lotus-type porous copper during high-strain-rate deformation. However, at high strain rate, the bending deformation characteristics of the pore walls obviously differed from those at low strain rate, which was the main mechanism by which the plateau stress exhibited strain-rate sensitivity when the strain rate exceeded a certain value and exhibited less densification initial strain at high strain rate.展开更多
The microstructures of electroformed copper liners of shaped charges that had undergone high-strain-rate deformation were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Meanwhile, the ...The microstructures of electroformed copper liners of shaped charges that had undergone high-strain-rate deformation were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Meanwhile, the orientation distribution of the grains in the recovered jet was examined by electron backscattering Kikuchi pattern (EBSP) technique. EBSP analysis reveals that the fibrous texture observed in the as-electroformed copper liners disappeared after explosive detonation deformation. OM observation shows that the microstructure evolves system- atically from the jet center to its perimeter during cooling from high temperatures after explosive detonation deformation. This microstructural characteristic is similar to that of solidification, i.e. there exist equiaxed grains in the center of the jet and significant columnar grains around the equiaxed grains. The result reveals that there is melting-related phenomenon in the jet center. Corresponding microhardness variations from the jet center to its perimeter is also determined. All the phenomena can be explained by a strong gradient of temperature across the section of the jet during plastic deformation at high-strain-rate.展开更多
Ultra-high strain rate impact tests were conducted by Split-Hopkinson pressure bar to investigate the microstructure evolution and impact deformation mechanism of a solution treated casting AM80 Mg alloy at 25, 150 an...Ultra-high strain rate impact tests were conducted by Split-Hopkinson pressure bar to investigate the microstructure evolution and impact deformation mechanism of a solution treated casting AM80 Mg alloy at 25, 150 and 250 ℃ with a strain rate of 5000 s^(-1). The microcrack and dynamic recrystallization(DRX) preferentially nucleate at grain boundary(GB) and twin boundary(TB), especially at the intersections between GBs and TBs, and then propagate along twin direction. In contrast, the adiabatic shear bands preferentially occur at high-density twined regions. At 25 ℃, the dominated deformation mechanisms are basal slip and twinning. As deformation temperature increases to 150and 250℃, the deformation gradually shifts to be dominated by a coordinated mechanism among non-basal slip, twinning and DRX. The flow stress behavior and deformation mechanism indicate that the degree of decrease in flow stress with temperature is associated with the change of deformation mode.展开更多
In order to clarify the effect of strain rate on hot deformation characteristics of GH690superalloy,the hot deformationbehavior of this superalloy was investigated by isothermal compression in the temperature range of...In order to clarify the effect of strain rate on hot deformation characteristics of GH690superalloy,the hot deformationbehavior of this superalloy was investigated by isothermal compression in the temperature range of1000?1200°C and strain raterange of0.001?10s?1on a Gleeble?3800thermo-mechanical simulator.The results reveal that the flow stress is sensitive to the strainrate,and the dynamic recrystallization(DRX)is the principal softening mechanism.The strain rate of0.1s?1is considered to be thecritical point during the hot deformation at1000°C.The DRX process is closely related to the strain rate due to the adiabatictemperature rise.The strain rate has an important influence on DDRX and CDRX during hot deformation.The nucleation of DRXcan be activated by twin boundaries,and there is a lower fraction ofΣ3n(n=1,2,3)boundaries at the intermediate strain rate of0.1s?1.展开更多
Fine grained Mg-7Gd-5Y-1.2Nd-0.5Zr alloy was investigated by dynamic compression tests using a Split Hopkinson Pressure Bar under the strain rates in the range 1000-2000 s^(-1) and the temperature range 293-573 K alon...Fine grained Mg-7Gd-5Y-1.2Nd-0.5Zr alloy was investigated by dynamic compression tests using a Split Hopkinson Pressure Bar under the strain rates in the range 1000-2000 s^(-1) and the temperature range 293-573 K along the normal direction.The microstructure was measured by optical microscopy,electron back-scattering diffraction,transmission electron microscopy and X-ray diffractometry.The results showed that Mg-7Gd-5Y-1.2Nd-0.5Zr alloy had the positive strain rate strengthening effect and thermal softening effect at high temperature.The solid solution of Gd and Y atoms in Mg-7Gd-5Y-1.2Nd-0.5Zr alloy reduced the asymmetry of α-Mg crystals and changed the critical shear stress of various deformation mechanisms.The main deformation mechanisms were prismatic slip and pyramidal(a)slip,{102}tension twinning,and dynamic recrystallization caused by local deformation such as particle-stimulated nucleation.c 2020 Published by Elsevier B.V.on behalf of Chongqing University.展开更多
The mechanical properties of dual-phase steel (DP1000) over the strain rate range of 10^-3-10^3 s^-1 were studied using an electronic universal testing machine and a high-speed tensile testing machine.The plastic defo...The mechanical properties of dual-phase steel (DP1000) over the strain rate range of 10^-3-10^3 s^-1 were studied using an electronic universal testing machine and a high-speed tensile testing machine.The plastic deformation mechanism was investigated from the perspectives of the strain rate sensitivity index,activation volume and dynamic factors.The results show that the tensile strength and yield strength of DP1000 increase as the strain rate increases.The elongation increases without any change after fracture,and then decreased rapidly when the strain rate reaches 103 s^-1.The true strain curves of DP1000 show three stages:the point of instability decreases in the strain range of 10^-3-10^-1 s^-1;the instability point increases between 100-5×10^2 s^-1;above 5×10^2 s^-1,and the instability strain becomes smaller again.The plastic deformation mechanism of the DP was determined by the competitive contributions of work hardening (strain hardening,strain rate hardening) and softening effects due to the adiabatic temperature rise.展开更多
The as-formed and post-deformed microstructures in both electroformed and spin-formed copper liners of shaped charge were studied by optical microscopy(OM), electron backscattering Kikuchi patterns(EBSP) technique and...The as-formed and post-deformed microstructures in both electroformed and spin-formed copper liners of shaped charge were studied by optical microscopy(OM), electron backscattering Kikuchi patterns(EBSP) technique and transmission electron microscopy(TEM). The deformation was carried out at an ultra-high strain rate. OM analysis shows that the initial grains of the electroformed copper liner are finer than those of the spin-formed copper liners. Meanwhile, EBSP analysis reveals that the fiber texture exists in the electroformed copper liners, whereas there is no texture observed in the spin-formed copper liners before deformation. Having undergone high-strain-rate deformation the grains in the recovered slugs, which are transformed from both the electroformed and spin-formed copper liners, all become small. TEM observations of the above two kinds of post-deformed specimens show the existence of cellular structures characterized by tangled dislocations and subgrain boundaries consisting of dislocation arrays. These experimental results indicate that dynamic recovery and recrystallization play an important role in the high-strain-rate deformation process.展开更多
The effects of strain rate on the dislocation type and dislocation configure of TA15 alloy were investigated.The experimental results show that the operating dislocation type changes from c type to c and a+ c type wi...The effects of strain rate on the dislocation type and dislocation configure of TA15 alloy were investigated.The experimental results show that the operating dislocation type changes from c type to c and a+ c type with increasing strain rate under the deformation condition of 900℃,60% strain.Under the condition of 900℃,60% strain and 0.001/s strain rate,lots of orientate dislocation cellular configurations and sub-grains,many dislocations pile up before sub boundary.When the strain rate increases to 0.1/s,some dislocations exhibit curved and dislocation tangles and pile-ups can be found,suggesting more dislocations and much stronger interactions among dislocations.展开更多
The deformation localization in strain-rate sensitive porous materials is analyzed based on the lower bound approach proposed by the author. The retarding effect of material viscosity on deformation localization and t...The deformation localization in strain-rate sensitive porous materials is analyzed based on the lower bound approach proposed by the author. The retarding effect of material viscosity on deformation localization and the influence of the material strain-rate sensitivity factor on the critical strain to localized necking and the shear localization are investigated. Consideration concerning the material inhomogeneity and the void nucleation effect is also given. Finally the fracture strains of the plane strain tension specimens of AISI4340 steels are calculated and the results are compared with those of the experiment and of Gurson's equations.展开更多
The microstructures in the electroformed copper liners of shapedcharges after high-strain-rate plastic deformation were in-vestigated by transmission electron microscopy(TEM). Meanwhile, theorientation distribution of...The microstructures in the electroformed copper liners of shapedcharges after high-strain-rate plastic deformation were in-vestigated by transmission electron microscopy(TEM). Meanwhile, theorientation distribution of the grains in the recovered slug wasexamined by the electron backscattering Kikuchipattern(EBSP)technique. EBSP analysis illustrated that unlike theas-formed electro- formed copper liners of shaped charges the grainorientations in the recovered slug are distributed along randomly allthe directions after undergoing heavily strain deformation athigh-strain rate. Optical microscopy shows a typicalrecrystallization structure, and TEM exam- ination revealsdislocation cells existed in the thin foil specimen. These resultsindicate that dynamic recovery and recrystallization occur duringthis plastic deformation process, and the associated deformationtemperature is considered to be higher than 0.6 times the meltingpoint of copper.展开更多
The paper deals with different plastic deformation behavior of electroformed copper liner of shaped charge, deformed at high strain rate (about 1×107s-1) and normal strain rate (4×10-4s-1). The crystallograp...The paper deals with different plastic deformation behavior of electroformed copper liner of shaped charge, deformed at high strain rate (about 1×107s-1) and normal strain rate (4×10-4s-1). The crystallographic orientation distribution of grains in recovered slugs which had undergone high-strain-rate plastic deformation during explosive detonation was investigated by electron backscattering Kikuchi pattern technique. Cellular structures formed by tangled dislocations and sub-grain boundaries consisting of dislocation arrays were detected in the recovered slugs. Some twins and slip dislocations were observed in specimen deformed at normal strain rate. It was found that dynamic recovery and recrystallization take place during high-strain-rate deformation due to the temperature rising, whereas the conventional slip mechanism operates during deformation at normal strain rate.展开更多
The effects of strain rates on the hot working characteristics and nucleation mechanisms of dynamic recrystallization (DRX) were studied by optical microscopy and electron backscatter diffraction (EBSD) technique. Hot...The effects of strain rates on the hot working characteristics and nucleation mechanisms of dynamic recrystallization (DRX) were studied by optical microscopy and electron backscatter diffraction (EBSD) technique. Hot compression tests were conducted using a Gleeble-1500 simulator at a true strain of 0.7 in the temperature range of 1000 to 1150 °C and strain rate range of 0.01 to 10.00 s?1. It is found that the size and volume fraction of the DRX grains in hot-deformed Inconel 625 superalloy firstly decrease and then increase with increasing strain rate. Meanwhile, the nucleation mechanism of DRX is closely related to the deformation strain rate due to the deformation thermal effect. The discontinuous DRX (DDRX) with bulging of original grain boundaries is the primary nucleation mechanism of DRX, while the continuous DRX (CDRX) with progressive subgrain rotation acts as a secondary nucleation mechanism. The twinning formation can activate the nucleation of DRX. The effects of bulging of original grain boundaries and twinning formation are firstly gradually weakened and then strengthened with the increasing strain rate due to the deformation thermal effect. On the contrary, the effect of subgrain rotation is firstly gradually strengthened and then weakened with the increasing strain rate.展开更多
In order to investigate the hot deformation behavior of superalloy GH696, isothermal compression experiments were carried out at deformation temperatures of 880?1120 °C and strain rates of 0.01?10 s?1. And the de...In order to investigate the hot deformation behavior of superalloy GH696, isothermal compression experiments were carried out at deformation temperatures of 880?1120 °C and strain rates of 0.01?10 s?1. And the deformation amount of all the samples was 50%. The strain rate sensitivity exponent (m) and strain hardening exponent (n) under different deformation conditions were calculated, meanwhile the effects of the processing parameters on the values ofm andn were analyzed. The results show that the flow stress increases with the increase of strain rate and the decrease of deformation temperature. The value ofm increases with the increase of deformation temperature and decreases with the increase of strain rate, while the value ofn decreases with the increase of deformation temperature. A novel flow stress model during hot deformation of superalloy GH696 was also established. And the calculated flow stress of the alloy is in good agreement with the experimental one.展开更多
The essential difference in the formation of conjugate shear zones in brittle and ductile deformation is that the intersection angle between brittle conjugate faults in the contractional quadrants is acute (usually ...The essential difference in the formation of conjugate shear zones in brittle and ductile deformation is that the intersection angle between brittle conjugate faults in the contractional quadrants is acute (usually ~60°) whereas the angle between conjugate ductile shear zones is obtuse (usually 110°). The Mohr-Coulomb failure criterion, an experimentally validated empirical relationship, is commonly applied for interpreting the stress directions based on the orientation of the brittle shear fractures. However, the Mohr-Coulomb failure criterion fails to explain the formation of the low-angle normal fault, high-angle reverse fault, and the conjugate strike-slip fault with an obtuse angle in the ~1 direction. Although it is ten years since the Maximum-Effective-Moment (MEM) criterion was first proposed, and increasingly solid evidence in support of it has been obtained from both observed examples in nature and laboratory experiments, it is not yet a commonly accepted model to use to interpret these anti- Mohr-Coulomb features that are widely observed in the natural world. The deformational behavior of rock depends on its intrinsic mechanical properties and external factors such as applied stresses, strain rates, and temperature conditions related to crustal depths. The occurrence of conjugate shear features with obtuse angles of -110~ in the contractional direction on different scales and at different crustal levels are consistent with the prediction of the MEM criterion, therefore -110° is a reliable indicator for deformation localization that occurred at medium-low strain rates at any crustal levels. Since the strain-rate is variable through time in nature, brittle, ductile, and plastic features may appear within the same rock.展开更多
Hot deformation behaviors were studied by means of scanning electron microscopy (SEM) and uniaxial thermal tension. The effect of deformation temperature and strain rate on flow stress was evaluated, and deformation...Hot deformation behaviors were studied by means of scanning electron microscopy (SEM) and uniaxial thermal tension. The effect of deformation temperature and strain rate on flow stress was evaluated, and deformation mechanism was analyzed. The results show that the stress-strain curves of Ti-6Al-4V (TC4) alloy sheet and TC4 alloy bar at elevated temperatures have different forms and rules. Flow stress of TC4 is controlled by both strain rate and deformation temperature. The flow stress decreases with the increase of high temperature. Deformation mechanisms exhibit dynamic recovery and recrystallization feature within high temperature region and grain boundary slip behaviors at low temperature.展开更多
In this study, we analyze the regional GPS data of Crustal Movement Observation Network of China (CMONOC) observed from 2009-2013 using the BERNESE GPS software, and then the preliminary results of horizontal veloci...In this study, we analyze the regional GPS data of Crustal Movement Observation Network of China (CMONOC) observed from 2009-2013 using the BERNESE GPS software, and then the preliminary results of horizontal velocity field and strain rate field are presented, which could reflect the overall deformation features in the Chinese mainland from 2009-2013. Besides, the velocity error and the probable factors that could influence the estimate of long-term deformation are also discussed.展开更多
We have determined approximate average rates of deformation in the Qinghai_Tibet plateau and its margins from the GPS data for last 10 years and the moment tensors from earthquakes between 1900 and 1999.We also determ...We have determined approximate average rates of deformation in the Qinghai_Tibet plateau and its margins from the GPS data for last 10 years and the moment tensors from earthquakes between 1900 and 1999.We also determined the strain rate (seismic strain rate) associated with the seismic deformation using 254 M w ≥5.0 earthquakes,and estimated the shortening and extension rates for every block in the area as well.We also estimated the strain rate (geodetic strain rate)by 80 GPS sites’ velocity vectors and analyzed characteristic of kinematics by two kinds of strain rates and discussed earthquake potential in the area.As a result,the deformation rates from seismic moment tensors and from GPS velocities are basically agreed with each other.It is feasible to analyze seismic risk by comparing geodetic strain rate with seismic strain rate based on the opinion that strain energy will be released through earthquake.It is concluded that there is no strong earthquake potential (>M7) in the Qinghai_Tibet plateau and its margins,but there is earthquake potential (>M5) in middle Tibet in a few years.展开更多
基金Projects(51231002,51271054,51571058,50671023)supported by the National Natural Science Foundation of China
文摘To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at different temperatures T and strain ratesε were systematically studied through compression tests and microscopic observations. The increase in ε eliminates strain softening at T≤473 K, and largely enhances the yield strength and flow stress at 473?573 K. The shear deformation dominates the plastic deformation of ECAP-treated Al. Many cracks along shear bands (SBs) are formed at T≥473 K and secondary SBs basically disappear at 1×10?3 s?1; however, at 1×10?2 s?1, cracks are only observed at temperature below 473 K, and secondary SBs become clearer at T≥473 K. The microstructures of ECAP-treated Al mainly consist of sub-grains (SGs). The increase in ε inhibits the SG growth, thus leading to the increases both in yield strength and flow stress at high temperatures.
文摘This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy inequality and the representation theorem for thermoviscoelastic solids (TVES) with rheology. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics and are based on contravariant deviatoric second Piola-Kirchhoff stress tensor and its work conjugate covariant Green’s strain tensor and their material derivatives of up to order m and n respectively. All published works on nonlinear dynamics of TVES with rheology are mostly based on phenomenological mathematical models. In rare instances, some aspects of CBL are used but are incorrectly altered to obtain mass, stiffness and damping matrices using space-time decoupled approaches. In the work presented in this paper, we show that this is not possible using CBL of CCM for TVES with rheology. Thus, the mathematical models used currently in the published works are not the correct description of the physics of nonlinear dynamics of TVES with rheology. The mathematical model used in the present work is strictly based on the CBL of CCM and is thermodynamically and mathematically consistent and the space-time coupled finite element methodology used in this work is unconditionally stable and provides solutions with desired accuracy and is ideally suited for nonlinear dynamics of TVES with memory. The work in this paper is the first presentation of a mathematical model strictly based on CBL of CCM and the solution of the mathematical model is obtained using unconditionally stable space-time coupled computational methodology that provides control over the errors in the evolution. Both space-time coupled and space-time decoupled finite element formulations are considered for obtaining solutions of the IVPs described by the mathematical model and are presented in the paper. Factors or the physics influencing dynamic response and dynamic bifurcation for TVES with rheology are identified and are also demonstrated through model problem studies. A simple model problem consisting of a rod (1D) of TVES material with memory fixed at one end and subjected to harmonic excitation at the other end is considered to study nonlinear dynamics of TVES with rheology, frequency response as well as dynamic bifurcation phenomenon.
基金partially supported by National Natural Science Foundation of China (grants 41474090 and 41490610)the financial support by the China Scholarship Councilthe Basic Research Project of Institute of Geology, CEA (IGCEA1314)
文摘The link between the crustal deformation and mantle kinematics in the Tibetan Plateau has been well known thanks to dense GPS measurements and the relatively detailed anisotropy structure of the lithospheric mantle.However, whether the crust deforms coherently with the upper mantle in the Shan-Thai terrane(also known as the Shan-Thai block) remains unclear.In this study, we investigate the deformation patterns through strain rate tensors in the southeastern Tibetan Plateau derived from the latest GPS measurements and find that in the Shan-Thai terrane the upper crust may be coupled with the lower crust and the upper mantle.The GPS-derived strain rate tensors are in agreement with the slipping patterns and rates of major strike-slip faults in the region.The most prominent shear zone, whose shear strain rates are larger than 100×10^(–9) a^(–1), is about 1000-km-long in the west, trending northward along Sagaing fault to the Eastern Himalayan Syntaxis in the north, with maximum rate of compressive strain up to –240×10^(–9) a^(–1).A secondary shear zone along the Anninghe-Xiaojiang Fault in the east shows segmented shear zones near several conjunctions.While the strain rate along RRF is relatively low due to the low slip rate and low seismicity there, in Lijiang and Tengchong several local shear zones are present under an extensional dominated stress regime that is related to normal faulting earthquakes and volcanism, respectively.Furthermore, by comparing GPS-derived strain rate tensors with earthquake focal mechanisms, we find that 75.8%(100 out of 132) of the earthquake T-axes are consistent with the GPS-derived strain rates.Moreover, we find that the Fast Velocity Direction(FVDs) at three depths beneath the Shan-Thai terrane are consistent with extensional strain rate with gradually increasing angular differences, which are likely resulting from the basal shear forces induced by asthenospheric flow associated with the oblique subduction of the India plate beneath the Shan-Thai terrane.Therefore, in this region the upper crust deformation may be coherent with that of the lower crust and the lithospheric mantle.
基金financially supported by the National Natural Science Foundation(No.50904004)
文摘Lotus-type porous copper was fabricated by unidirectional solidification, and compressive experiments were subsequently conducted in the strain rate range of 10-3-2400 s-1 with the compressive direction parallel to the pores. A GLEEBLE-1500 thermal-mechanical simulation system and a split Hopkinson pressure bar (SHPB) were used to investigate the effect of strain rate on the compressive deforma-tion behaviors of lotus-type porous copper. The influence mechanism of strain rate was also analyzed by the strain-controlling method and by high-speed photography. The results indicated that the stress-strain curves of lotus-typed porous copper consist of a linear elastic stage, a plateau stage, and a densification stage at various strain rates. At low strain rate (〈1.0 s^-1), the strain rate had little influence on the stress-strain curves; but when the strain rate exceeded 1.0 s^-1, it was observed to strongly affect the plateau stage, showing obvious strain-rate-hardening characteristics. Strain rate also influenced the densification initial strain. The densification initial strain at high strain rate was less than that at low strain rate. No visible inhomogeneous deformation caused by shockwaves was observed in lotus-type porous copper during high-strain-rate deformation. However, at high strain rate, the bending deformation characteristics of the pore walls obviously differed from those at low strain rate, which was the main mechanism by which the plateau stress exhibited strain-rate sensitivity when the strain rate exceeded a certain value and exhibited less densification initial strain at high strain rate.
文摘The microstructures of electroformed copper liners of shaped charges that had undergone high-strain-rate deformation were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Meanwhile, the orientation distribution of the grains in the recovered jet was examined by electron backscattering Kikuchi pattern (EBSP) technique. EBSP analysis reveals that the fibrous texture observed in the as-electroformed copper liners disappeared after explosive detonation deformation. OM observation shows that the microstructure evolves system- atically from the jet center to its perimeter during cooling from high temperatures after explosive detonation deformation. This microstructural characteristic is similar to that of solidification, i.e. there exist equiaxed grains in the center of the jet and significant columnar grains around the equiaxed grains. The result reveals that there is melting-related phenomenon in the jet center. Corresponding microhardness variations from the jet center to its perimeter is also determined. All the phenomena can be explained by a strong gradient of temperature across the section of the jet during plastic deformation at high-strain-rate.
基金supported by the National Natural Science Foundation of China (Nos. 51975201 and 52071139)the Natural Science Foundation of Hunan Province (No.2019JJ50586)。
文摘Ultra-high strain rate impact tests were conducted by Split-Hopkinson pressure bar to investigate the microstructure evolution and impact deformation mechanism of a solution treated casting AM80 Mg alloy at 25, 150 and 250 ℃ with a strain rate of 5000 s^(-1). The microcrack and dynamic recrystallization(DRX) preferentially nucleate at grain boundary(GB) and twin boundary(TB), especially at the intersections between GBs and TBs, and then propagate along twin direction. In contrast, the adiabatic shear bands preferentially occur at high-density twined regions. At 25 ℃, the dominated deformation mechanisms are basal slip and twinning. As deformation temperature increases to 150and 250℃, the deformation gradually shifts to be dominated by a coordinated mechanism among non-basal slip, twinning and DRX. The flow stress behavior and deformation mechanism indicate that the degree of decrease in flow stress with temperature is associated with the change of deformation mode.
基金Special Project(2013) supported by China’s National Development and Reform Commission for R&D and Industrialization of New Materials
文摘In order to clarify the effect of strain rate on hot deformation characteristics of GH690superalloy,the hot deformationbehavior of this superalloy was investigated by isothermal compression in the temperature range of1000?1200°C and strain raterange of0.001?10s?1on a Gleeble?3800thermo-mechanical simulator.The results reveal that the flow stress is sensitive to the strainrate,and the dynamic recrystallization(DRX)is the principal softening mechanism.The strain rate of0.1s?1is considered to be thecritical point during the hot deformation at1000°C.The DRX process is closely related to the strain rate due to the adiabatictemperature rise.The strain rate has an important influence on DDRX and CDRX during hot deformation.The nucleation of DRXcan be activated by twin boundaries,and there is a lower fraction ofΣ3n(n=1,2,3)boundaries at the intermediate strain rate of0.1s?1.
基金National Natural Science Foundation of China(Nos.51571145,51404137)City of Ningbo"science and technology innovation 2025"major special project(new energy vehicle lightweight magnesium alloy material precision forming technology)(No.2018B10045).
文摘Fine grained Mg-7Gd-5Y-1.2Nd-0.5Zr alloy was investigated by dynamic compression tests using a Split Hopkinson Pressure Bar under the strain rates in the range 1000-2000 s^(-1) and the temperature range 293-573 K along the normal direction.The microstructure was measured by optical microscopy,electron back-scattering diffraction,transmission electron microscopy and X-ray diffractometry.The results showed that Mg-7Gd-5Y-1.2Nd-0.5Zr alloy had the positive strain rate strengthening effect and thermal softening effect at high temperature.The solid solution of Gd and Y atoms in Mg-7Gd-5Y-1.2Nd-0.5Zr alloy reduced the asymmetry of α-Mg crystals and changed the critical shear stress of various deformation mechanisms.The main deformation mechanisms were prismatic slip and pyramidal(a)slip,{102}tension twinning,and dynamic recrystallization caused by local deformation such as particle-stimulated nucleation.c 2020 Published by Elsevier B.V.on behalf of Chongqing University.
基金Funded by the National Natural Science Foundation of China(No.52004122)the State Key Laboratory of Marine Equipment made of Metal Material and Application(No.SKLMEAUSTL-201906)+1 种基金the Guidance plan of Natural Science Foundation of Liaoning Province(No.2019-ZD-0025)the Key Project of Liaoning Education Department(No.2019FWDF03)。
文摘The mechanical properties of dual-phase steel (DP1000) over the strain rate range of 10^-3-10^3 s^-1 were studied using an electronic universal testing machine and a high-speed tensile testing machine.The plastic deformation mechanism was investigated from the perspectives of the strain rate sensitivity index,activation volume and dynamic factors.The results show that the tensile strength and yield strength of DP1000 increase as the strain rate increases.The elongation increases without any change after fracture,and then decreased rapidly when the strain rate reaches 103 s^-1.The true strain curves of DP1000 show three stages:the point of instability decreases in the strain range of 10^-3-10^-1 s^-1;the instability point increases between 100-5×10^2 s^-1;above 5×10^2 s^-1,and the instability strain becomes smaller again.The plastic deformation mechanism of the DP was determined by the competitive contributions of work hardening (strain hardening,strain rate hardening) and softening effects due to the adiabatic temperature rise.
基金Project(571014569) supported by the National Natural Science Foundation of China
文摘The as-formed and post-deformed microstructures in both electroformed and spin-formed copper liners of shaped charge were studied by optical microscopy(OM), electron backscattering Kikuchi patterns(EBSP) technique and transmission electron microscopy(TEM). The deformation was carried out at an ultra-high strain rate. OM analysis shows that the initial grains of the electroformed copper liner are finer than those of the spin-formed copper liners. Meanwhile, EBSP analysis reveals that the fiber texture exists in the electroformed copper liners, whereas there is no texture observed in the spin-formed copper liners before deformation. Having undergone high-strain-rate deformation the grains in the recovered slugs, which are transformed from both the electroformed and spin-formed copper liners, all become small. TEM observations of the above two kinds of post-deformed specimens show the existence of cellular structures characterized by tangled dislocations and subgrain boundaries consisting of dislocation arrays. These experimental results indicate that dynamic recovery and recrystallization play an important role in the high-strain-rate deformation process.
文摘The effects of strain rate on the dislocation type and dislocation configure of TA15 alloy were investigated.The experimental results show that the operating dislocation type changes from c type to c and a+ c type with increasing strain rate under the deformation condition of 900℃,60% strain.Under the condition of 900℃,60% strain and 0.001/s strain rate,lots of orientate dislocation cellular configurations and sub-grains,many dislocations pile up before sub boundary.When the strain rate increases to 0.1/s,some dislocations exhibit curved and dislocation tangles and pile-ups can be found,suggesting more dislocations and much stronger interactions among dislocations.
文摘The deformation localization in strain-rate sensitive porous materials is analyzed based on the lower bound approach proposed by the author. The retarding effect of material viscosity on deformation localization and the influence of the material strain-rate sensitivity factor on the critical strain to localized necking and the shear localization are investigated. Consideration concerning the material inhomogeneity and the void nucleation effect is also given. Finally the fracture strains of the plane strain tension specimens of AISI4340 steels are calculated and the results are compared with those of the experiment and of Gurson's equations.
基金financially supported by the National Natural Science Foundation of China (No.59971008).
文摘The microstructures in the electroformed copper liners of shapedcharges after high-strain-rate plastic deformation were in-vestigated by transmission electron microscopy(TEM). Meanwhile, theorientation distribution of the grains in the recovered slug wasexamined by the electron backscattering Kikuchipattern(EBSP)technique. EBSP analysis illustrated that unlike theas-formed electro- formed copper liners of shaped charges the grainorientations in the recovered slug are distributed along randomly allthe directions after undergoing heavily strain deformation athigh-strain rate. Optical microscopy shows a typicalrecrystallization structure, and TEM exam- ination revealsdislocation cells existed in the thin foil specimen. These resultsindicate that dynamic recovery and recrystallization occur duringthis plastic deformation process, and the associated deformationtemperature is considered to be higher than 0.6 times the meltingpoint of copper.
文摘The paper deals with different plastic deformation behavior of electroformed copper liner of shaped charge, deformed at high strain rate (about 1×107s-1) and normal strain rate (4×10-4s-1). The crystallographic orientation distribution of grains in recovered slugs which had undergone high-strain-rate plastic deformation during explosive detonation was investigated by electron backscattering Kikuchi pattern technique. Cellular structures formed by tangled dislocations and sub-grain boundaries consisting of dislocation arrays were detected in the recovered slugs. Some twins and slip dislocations were observed in specimen deformed at normal strain rate. It was found that dynamic recovery and recrystallization take place during high-strain-rate deformation due to the temperature rising, whereas the conventional slip mechanism operates during deformation at normal strain rate.
基金co-funded by the National Natural Science Foundation of China and Baoshan Iron & Steel Co., Ltd. (No. 50834008)
文摘The effects of strain rates on the hot working characteristics and nucleation mechanisms of dynamic recrystallization (DRX) were studied by optical microscopy and electron backscatter diffraction (EBSD) technique. Hot compression tests were conducted using a Gleeble-1500 simulator at a true strain of 0.7 in the temperature range of 1000 to 1150 °C and strain rate range of 0.01 to 10.00 s?1. It is found that the size and volume fraction of the DRX grains in hot-deformed Inconel 625 superalloy firstly decrease and then increase with increasing strain rate. Meanwhile, the nucleation mechanism of DRX is closely related to the deformation strain rate due to the deformation thermal effect. The discontinuous DRX (DDRX) with bulging of original grain boundaries is the primary nucleation mechanism of DRX, while the continuous DRX (CDRX) with progressive subgrain rotation acts as a secondary nucleation mechanism. The twinning formation can activate the nucleation of DRX. The effects of bulging of original grain boundaries and twinning formation are firstly gradually weakened and then strengthened with the increasing strain rate due to the deformation thermal effect. On the contrary, the effect of subgrain rotation is firstly gradually strengthened and then weakened with the increasing strain rate.
文摘In order to investigate the hot deformation behavior of superalloy GH696, isothermal compression experiments were carried out at deformation temperatures of 880?1120 °C and strain rates of 0.01?10 s?1. And the deformation amount of all the samples was 50%. The strain rate sensitivity exponent (m) and strain hardening exponent (n) under different deformation conditions were calculated, meanwhile the effects of the processing parameters on the values ofm andn were analyzed. The results show that the flow stress increases with the increase of strain rate and the decrease of deformation temperature. The value ofm increases with the increase of deformation temperature and decreases with the increase of strain rate, while the value ofn decreases with the increase of deformation temperature. A novel flow stress model during hot deformation of superalloy GH696 was also established. And the calculated flow stress of the alloy is in good agreement with the experimental one.
基金supported by the National Science Foundation of China (41072071)
文摘The essential difference in the formation of conjugate shear zones in brittle and ductile deformation is that the intersection angle between brittle conjugate faults in the contractional quadrants is acute (usually ~60°) whereas the angle between conjugate ductile shear zones is obtuse (usually 110°). The Mohr-Coulomb failure criterion, an experimentally validated empirical relationship, is commonly applied for interpreting the stress directions based on the orientation of the brittle shear fractures. However, the Mohr-Coulomb failure criterion fails to explain the formation of the low-angle normal fault, high-angle reverse fault, and the conjugate strike-slip fault with an obtuse angle in the ~1 direction. Although it is ten years since the Maximum-Effective-Moment (MEM) criterion was first proposed, and increasingly solid evidence in support of it has been obtained from both observed examples in nature and laboratory experiments, it is not yet a commonly accepted model to use to interpret these anti- Mohr-Coulomb features that are widely observed in the natural world. The deformational behavior of rock depends on its intrinsic mechanical properties and external factors such as applied stresses, strain rates, and temperature conditions related to crustal depths. The occurrence of conjugate shear features with obtuse angles of -110~ in the contractional direction on different scales and at different crustal levels are consistent with the prediction of the MEM criterion, therefore -110° is a reliable indicator for deformation localization that occurred at medium-low strain rates at any crustal levels. Since the strain-rate is variable through time in nature, brittle, ductile, and plastic features may appear within the same rock.
文摘Hot deformation behaviors were studied by means of scanning electron microscopy (SEM) and uniaxial thermal tension. The effect of deformation temperature and strain rate on flow stress was evaluated, and deformation mechanism was analyzed. The results show that the stress-strain curves of Ti-6Al-4V (TC4) alloy sheet and TC4 alloy bar at elevated temperatures have different forms and rules. Flow stress of TC4 is controlled by both strain rate and deformation temperature. The flow stress decreases with the increase of high temperature. Deformation mechanisms exhibit dynamic recovery and recrystallization feature within high temperature region and grain boundary slip behaviors at low temperature.
基金supported by Foundation of Institute of Seismology,China Earthquake Administration(201326119)the National Natural Science Foundation of China(41074016,41274027,41304067)
文摘In this study, we analyze the regional GPS data of Crustal Movement Observation Network of China (CMONOC) observed from 2009-2013 using the BERNESE GPS software, and then the preliminary results of horizontal velocity field and strain rate field are presented, which could reflect the overall deformation features in the Chinese mainland from 2009-2013. Besides, the velocity error and the probable factors that could influence the estimate of long-term deformation are also discussed.
文摘We have determined approximate average rates of deformation in the Qinghai_Tibet plateau and its margins from the GPS data for last 10 years and the moment tensors from earthquakes between 1900 and 1999.We also determined the strain rate (seismic strain rate) associated with the seismic deformation using 254 M w ≥5.0 earthquakes,and estimated the shortening and extension rates for every block in the area as well.We also estimated the strain rate (geodetic strain rate)by 80 GPS sites’ velocity vectors and analyzed characteristic of kinematics by two kinds of strain rates and discussed earthquake potential in the area.As a result,the deformation rates from seismic moment tensors and from GPS velocities are basically agreed with each other.It is feasible to analyze seismic risk by comparing geodetic strain rate with seismic strain rate based on the opinion that strain energy will be released through earthquake.It is concluded that there is no strong earthquake potential (>M7) in the Qinghai_Tibet plateau and its margins,but there is earthquake potential (>M5) in middle Tibet in a few years.