For the compressive stress-induced failure of tunnels at depth, rock fracturing process is often closely associated with the generation of surface parallel fractures in the initial stage, and shear failure is likely t...For the compressive stress-induced failure of tunnels at depth, rock fracturing process is often closely associated with the generation of surface parallel fractures in the initial stage, and shear failure is likely to occur in the final process during the formation of shear bands, breakouts or V-shaped notches close to the excavation boundaries. However, the perfectly elastoplastic, strain-softening and elasto-brittle-plastic models cannot reasonably describe the brittle failure of hard rock tunnels under high in-situ stress conditions. These approaches often underestimate the depth of failure and overestimate the lateral extent of failure near the excavation. Based on a practical case of the mine-by test tunnel at an underground research laboratory (URL) in Canada, the influence of rock mass dilation on the depth and extent of failure and deformation is investigated using a calibrated cohesion weakening and frictional strengthening (CWFS) model. It can be found that, when modeling brittle failure of rock masses, the calibrated CWFS model with a constant dilation angle can capture the depth and extent of stress-induced brittle failure in hard rocks at a low confinement if the stress path is correctly represented, as demonstrated by the failure shape observed in the tunnel. However, using a constant dilation angle cannot simulate the nonlinear deformation behavior near the excavation boundary accurately because the dependence of rock mass dilation on confinement and plastic shear strain is not considered. It is illustrated from the numerical simulations that the proposed plastic shear strain and confinement-dependent dilation angle model in combination with the calibrated CWFS model implemented in FLAC can reasonably reveal both rock mass failure and displacement distribution in vicinity of the excavation simultaneously. The simulation results are in good agreement with the field observations and displacement measurement data.展开更多
The deformation, damage, fracture, plasticity and melting phenomenon induced by shear fracture were investigated and summarized for Zr-, Cu-, Ti- and Mg-based bulk metallic glasses (BMGs) and their composites. The s...The deformation, damage, fracture, plasticity and melting phenomenon induced by shear fracture were investigated and summarized for Zr-, Cu-, Ti- and Mg-based bulk metallic glasses (BMGs) and their composites. The shear fracture angles of these BMG materials often display obvious differences under compression and tension, and follow either the Mohr-Coulomb criterion or the unified tensile fracture criterion. The compressive plasticity of the composites is always higher than the tensile plasticity, leading to a significant inconsistency. The enhanced plasticity of BMG composites containing ductile dendrites compared to monolithic glasses strongly depends on the details of the microstructure of the composites. A deformation and damage mechanism of pseudo-plasticity, related to local cracking, is proposed to explain the inconsistency of plastic deformation under tension and compression. Besides, significant melting on the shear fracture surfaces was observed. It is suggested that melting is a common phenomenon in these materials with high strength and high elastic energy, as it is typical for BMGs and their composites failing under shear fracture. The melting mechanism can be explained by a combined effect of a significant temperature rise in the shear bands and the instantaneous release of the large amount of elastic energy stored in the material.展开更多
Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macrosc...Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macroscopic mechanical response of magnesium alloys under cyclic loading conditions, we employed a crystal plasticity model to analyze the stress-strain curves, specific crystal plane diffraction intensities, and the temporal evolution of various microscopic deformation mechanisms and twinning volume fractions for an extruded magnesium alloy, AXM10304, containing coherent precipitates. The research findings indicate that precipitation does not fundamentally alter the microscopic mechanisms of this alloy. However, it hinders twinning during the compression stage, mildly promotes detwinning during the tension stage, and enhances tension secondary hardening by elevating the difficulty of activation of the prismatic slip.展开更多
The design temperature of high plutonium concentration ZPPR fuel plates is 600°C. Cladding integrity of the 304 L stainless steel cladding is a significant concern with this fuel since even small holes can lead t...The design temperature of high plutonium concentration ZPPR fuel plates is 600°C. Cladding integrity of the 304 L stainless steel cladding is a significant concern with this fuel since even small holes can lead to substantial fuel degradation. Since the fuel has a higher coefficient of thermal expansion than the cladding, an investigation of the stress induced in the cladding due to the differential thermal expansion of fuel and cladding up to the design temperature was conducted. Small holes in the cladding envelope would be expected to lead to the fuel hydriding and oxidizing into a powder over a long period of time. This is the same type of chemical reaction chain that exists in the degradation of the high uranium concentration ZPPR fuel. Unfortunately, the uranium fuel was designed with vents which allowed this degradation to occur. The Pu cladding is sealed so only fuel with damaged cladding would be subject to this damage. The thermal stresses that can be developed in the fuel cladding have been calculated in this paper and compared to the ultimate tensile stress of the cladding. The conclusion is drawn that thermal stresses cannot induce holes in the cladding even for the highest storage temperatures predicted in calculations (292°C). In fact, thermal stress cannot cause cladding failure as long as the fuel temperatures are below the design limit of 600°C (1112°F).展开更多
基金supported by China Scholarship Council and GRC/MIRARCO-Mining Innovation of Laurentian University, Canada
文摘For the compressive stress-induced failure of tunnels at depth, rock fracturing process is often closely associated with the generation of surface parallel fractures in the initial stage, and shear failure is likely to occur in the final process during the formation of shear bands, breakouts or V-shaped notches close to the excavation boundaries. However, the perfectly elastoplastic, strain-softening and elasto-brittle-plastic models cannot reasonably describe the brittle failure of hard rock tunnels under high in-situ stress conditions. These approaches often underestimate the depth of failure and overestimate the lateral extent of failure near the excavation. Based on a practical case of the mine-by test tunnel at an underground research laboratory (URL) in Canada, the influence of rock mass dilation on the depth and extent of failure and deformation is investigated using a calibrated cohesion weakening and frictional strengthening (CWFS) model. It can be found that, when modeling brittle failure of rock masses, the calibrated CWFS model with a constant dilation angle can capture the depth and extent of stress-induced brittle failure in hard rocks at a low confinement if the stress path is correctly represented, as demonstrated by the failure shape observed in the tunnel. However, using a constant dilation angle cannot simulate the nonlinear deformation behavior near the excavation boundary accurately because the dependence of rock mass dilation on confinement and plastic shear strain is not considered. It is illustrated from the numerical simulations that the proposed plastic shear strain and confinement-dependent dilation angle model in combination with the calibrated CWFS model implemented in FLAC can reasonably reveal both rock mass failure and displacement distribution in vicinity of the excavation simultaneously. The simulation results are in good agreement with the field observations and displacement measurement data.
基金financially supported by the National Natural Science Foundation of China(NSFC)under Gtrant No.50401019the“Hun-dred of Talent Project"by Chinese Academy of Sciences+1 种基金National Outstanding Young Scientist Foundation for Z.F.Zhang under Grant No.50625103the financial support of the Alexander-von-Humboldt(AvH)Foundation.
文摘The deformation, damage, fracture, plasticity and melting phenomenon induced by shear fracture were investigated and summarized for Zr-, Cu-, Ti- and Mg-based bulk metallic glasses (BMGs) and their composites. The shear fracture angles of these BMG materials often display obvious differences under compression and tension, and follow either the Mohr-Coulomb criterion or the unified tensile fracture criterion. The compressive plasticity of the composites is always higher than the tensile plasticity, leading to a significant inconsistency. The enhanced plasticity of BMG composites containing ductile dendrites compared to monolithic glasses strongly depends on the details of the microstructure of the composites. A deformation and damage mechanism of pseudo-plasticity, related to local cracking, is proposed to explain the inconsistency of plastic deformation under tension and compression. Besides, significant melting on the shear fracture surfaces was observed. It is suggested that melting is a common phenomenon in these materials with high strength and high elastic energy, as it is typical for BMGs and their composites failing under shear fracture. The melting mechanism can be explained by a combined effect of a significant temperature rise in the shear bands and the instantaneous release of the large amount of elastic energy stored in the material.
文摘Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macroscopic mechanical response of magnesium alloys under cyclic loading conditions, we employed a crystal plasticity model to analyze the stress-strain curves, specific crystal plane diffraction intensities, and the temporal evolution of various microscopic deformation mechanisms and twinning volume fractions for an extruded magnesium alloy, AXM10304, containing coherent precipitates. The research findings indicate that precipitation does not fundamentally alter the microscopic mechanisms of this alloy. However, it hinders twinning during the compression stage, mildly promotes detwinning during the tension stage, and enhances tension secondary hardening by elevating the difficulty of activation of the prismatic slip.
文摘The design temperature of high plutonium concentration ZPPR fuel plates is 600°C. Cladding integrity of the 304 L stainless steel cladding is a significant concern with this fuel since even small holes can lead to substantial fuel degradation. Since the fuel has a higher coefficient of thermal expansion than the cladding, an investigation of the stress induced in the cladding due to the differential thermal expansion of fuel and cladding up to the design temperature was conducted. Small holes in the cladding envelope would be expected to lead to the fuel hydriding and oxidizing into a powder over a long period of time. This is the same type of chemical reaction chain that exists in the degradation of the high uranium concentration ZPPR fuel. Unfortunately, the uranium fuel was designed with vents which allowed this degradation to occur. The Pu cladding is sealed so only fuel with damaged cladding would be subject to this damage. The thermal stresses that can be developed in the fuel cladding have been calculated in this paper and compared to the ultimate tensile stress of the cladding. The conclusion is drawn that thermal stresses cannot induce holes in the cladding even for the highest storage temperatures predicted in calculations (292°C). In fact, thermal stress cannot cause cladding failure as long as the fuel temperatures are below the design limit of 600°C (1112°F).