期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Dynamic stability analysis of porous functionally graded beams under hygro-thermal loading using nonlocal strain gradient integral model 被引量:2
1
作者 Pei ZHANG P.SCHIAVONE Hai QING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第12期2071-2092,共22页
We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law ... We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law model.Unlike most studies on this topic,we consider both the bending deformation of the beams and the hygro-thermal load as size-dependent,simultaneously,by adopting the equivalent differential forms of the well-posed nonlocal strain gradient integral theory(NSGIT)which are strictly equipped with a set of constitutive boundary conditions(CBCs),and through which both the stiffness-hardening and stiffness-softening effects of the structures can be observed with the length-scale parameters changed.All the variables presented in the differential problem formulation are discretized.The numerical solution of the dynamic instability region(DIR)of various bounded beams is then developed via the generalized differential quadrature method(GDQM).After verifying the present formulation and results,we examine the effects of different parameters such as the nonlocal/gradient length-scale parameters,the static force factor,the functionally graded(FG)parameter,and the porosity parameter on the DIR.Furthermore,the influence of considering the size-dependent hygro-thermal load is also presented. 展开更多
关键词 nonlocal strain gradient integral model dynamic stability porous functionally graded(PFG)shear deformation beam size-dependent hygro-thermal load generalized differential quadrature method(GDQM)
下载PDF
Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes 被引量:1
2
作者 R.KOLAHCHI A.M.MONIRI BIDGOLI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第2期265-274,共10页
In this study, a model for dynamic instability of embedded single-walled car- bon nanotubes (SWCNTs) is presented. SWCNTs are modeled by the sinusoidal shear deformation beam theory (SSDBT). The modified couple st... In this study, a model for dynamic instability of embedded single-walled car- bon nanotubes (SWCNTs) is presented. SWCNTs are modeled by the sinusoidal shear deformation beam theory (SSDBT). The modified couple stress theory (MCST) is con- sidered in order to capture the size effects. The surrounding elastic medium is described by a visco-Pasternak foundation model, which accounts for normal, transverse shear, and damping loads. The motion equations are derived based on Hamilton's principle. The differential quadrature method (DQM) in conjunction with the Bolotin method is used in order to calculate the dynamic instability region (DIR) of SWCNTs. The effects of differ- ent parameters, such as nonlocal parameter, visco-Pasternak foundation, mode numbers, and geometrical parameters, are shown on the dynamic instability of SWCNTs. The re- sults depict that increasing the nonlocal parameter shifts the DIR to right. The results presented in this paper would be helpful in design and manufacturing of nano-electromechanical system (NEMS) and micro-electro-mechanical system (MEMS). 展开更多
关键词 dynamic instability single-walled carbon nanotubes (SWCNTs) modi- fied couple stress theory (MCST) sinusoidal shear deformation beam theory (SSDBT) Bolotin method
下载PDF
Shear deformable finite beam elements for composite box beams 被引量:2
3
作者 Nam-Il Kim Dong-Ho Choi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第2期223-240,共18页
The shear deformable thin-walled composite beams with closed cross-sections have been developed for coupled flexural, torsional, and buckling analyses. A theoretical model applicable to the thin-walled laminated compo... The shear deformable thin-walled composite beams with closed cross-sections have been developed for coupled flexural, torsional, and buckling analyses. A theoretical model applicable to the thin-walled laminated composite box beams is presented by taking into account all the structural couplings coming from the material anisotropy and the shear deformation effects. The current composite beam includes the transverse shear and the restrained warping induced shear deformation by using the first-order shear deformation beam theory. Seven governing equations are derived for the coupled axial-flexural-torsional-shearing buckling based on the principle of minimum total potential energy. Based on the present analytical model, three different types of finite composite beam elements, namely, linear, quadratic and cubic elements are developed to analyze the flexural, torsional, and buckling problems. In order to demonstrate the accuracy and superiority of the beam theory and the finite beam elements developed by this study,numerical solutions are presented and compared with the results obtained by other researchers and the detailed threedimensional analysis results using the shell elements of ABAQUS. Especially, the influences of the modulus ratio and the simplified assumptions in stress-strain relations on the deflection, twisting angle, and critical buckling loads of composite box beams are investigated. 展开更多
关键词 Thin-walled Composite box beam Deflection Twisting angle Buckling load Shear deformation
下载PDF
Deep Learning Applied to Computational Mechanics:A Comprehensive Review,State of the Art,and the Classics 被引量:1
4
作者 Loc Vu-Quoc Alexander Humer 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1069-1343,共275页
Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularl... Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example. 展开更多
关键词 Deep learning breakthroughs network architectures backpropagation stochastic optimization methods from classic to modern recurrent neural networks long short-term memory gated recurrent unit attention transformer kernel machines Gaussian processes libraries Physics-Informed Neural Networks state-of-the-art history limitations challenges Applications to computational mechanics Finite-element matrix integration improved Gauss quadrature Multiscale geomechanics fluid-filled porous media Fluid mechanics turbulence proper orthogonal decomposition Nonlinear-manifold model-order reduction autoencoder hyper-reduction using gappy data control of large deformable beam
下载PDF
Propagation dynamics of deformed 2D vortex Airy beams 被引量:1
5
作者 陈颖康 林茜文 +3 位作者 林书玉 莫少莹 万玲玉 梁毅 《Chinese Optics Letters》 SCIE EI CAS CSCD 2017年第8期30-34,共5页
Due to their intriguing properties including self-accelera- tion, non-diffraction, and self-healing, Airy beams have attracted a lot of attention and inspired tremendous potential applications in manipulation, biophot... Due to their intriguing properties including self-accelera- tion, non-diffraction, and self-healing, Airy beams have attracted a lot of attention and inspired tremendous potential applications in manipulation, biophotonics, and communication fields such as manipulation of particles, 展开更多
关键词 Propagation dynamics of deformed 2D vortex Airy beams
原文传递
Scrutiny of non-linear differential equations Euler-Bernoulli beam with large rotational deviation by AGM 被引量:1
6
作者 M. R. AKBARI M. NIMAFAR +1 位作者 D. D. GANJI M, M. AKBARZADE 《Frontiers of Mechanical Engineering》 SCIE CSCD 2014年第4期402-408,共7页
The kinematic assumptions upon which the Euler-Bernoulli beam theory is founded allow it to be extended to more advanced analysis. Simple superposition allows for three-dimensional transverse loading. Using alternativ... The kinematic assumptions upon which the Euler-Bernoulli beam theory is founded allow it to be extended to more advanced analysis. Simple superposition allows for three-dimensional transverse loading. Using alternative constitutive equations can allow for viscoelastic or plastic beam deformation. Euler-Bernoulli beam theory can also be extended to the analysis of curved beams, beam buckling, composite beams and geometrically nonlinear beam deflection. In this study, solving the nonlinear differential equation governing the calculation of the large rotation deviation of the beam (or column) has been discussed. Previously to calculate the rotational deviation of the beam, the assumption is made that the angular deviation of the beam is small. By considering the small slope in the linearization of the governing differential equation, the solving is easy. The result of this simplifica- tion in some cases will lead to an excessive error. In this paper nonlinear differential equations governing on this system are solved analytically by Akbari-Ganji's method (AGM). Moreover, in AGM by solving a set of algebraic equations, complicated nonlinear equations can easily be solved and without any mathematical operations such as integration solving. The solution of the problem can be obtained very simply and easily. Furthermore, to enhance the accuracy of the results, the Taylor expansion is notneeded in most cases via AGM manner. Also, comparisons are made between AGM and numerical method (Runge- Kutta 4th). The results reveal that this method is very effective and simple, and can be applied for other nonlinear problems. 展开更多
关键词 AGM critical load of columns large deformations of beam nonlinear differential equation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部