To seek and describe the influence of bubble size on geometric and motion characteristics of the bubble,six nozzles with different outlet diameters were selected to inject air into water and to produce different bubbl...To seek and describe the influence of bubble size on geometric and motion characteristics of the bubble,six nozzles with different outlet diameters were selected to inject air into water and to produce different bubble sizes.High-speed photography in conjunction with an in-house bubble image processing code was used.During the evolution of the bubble,bubble shape,traveling trajectory and the variation of bubble velocity were obtained.Bubble sizes acquired varied from0.25to8.69mm.The results show that after the bubble is separated from the nozzle,bubble shape sequentially experiences ellipsoidal shape,hat shape,mushroom shape and eventually the stable ellipsoidal shape.As the bubble size increases,the oscillation of the bubble surface is intensified.At the stabilization stage of bubble motion,bubble trajectories conform approximately to the sinusoidal function.Meanwhile,with the increase in bubble size,the bubble trajectory tends to be straightened and the influence of the horizontal bubble velocity component on the bubble trajectory attenuates.The present results explain the phenomena related to relatively large bubble size,which extends the existing relationship between the bubble terminal velocity and the equivalent bubble diameter.展开更多
The deformation of moving slug bubbles and its influence on the bubble breakup dynamics in microchannel were studied.Three bubble morphologies were found in the experiment:slug,dumbbell and grenade shapes.The viscosit...The deformation of moving slug bubbles and its influence on the bubble breakup dynamics in microchannel were studied.Three bubble morphologies were found in the experiment:slug,dumbbell and grenade shapes.The viscosity effect of continuous phase aggravates the velocity difference between the fluid near the wall and the bubble,resulting in that the continuous phase near the bubble head flows towards and squeezes the bubble tail,which causes the deformation of bubbles.Moreover,the experimental results show that the deformation of bubbles could significa ntly prolo ng the bubble breakup period at the downstream Y-junction.There exists the critical capillary number Ca_(Cr )for the asymmetric breakup of grenade bubbles,Ca_(Cr )increases with the rise of flow rate and viscosity of the continuous phase.展开更多
We study the structural properties of some light mass nuclei using two different formalisms(i) a recently developed simple effective interaction in the frame work of microscopic non-relativistic Hartree-Fock method ...We study the structural properties of some light mass nuclei using two different formalisms(i) a recently developed simple effective interaction in the frame work of microscopic non-relativistic Hartree-Fock method and(ii)the well-known relativistic mean field approach with NL3 parameter set. The bulk properties like binding energy, root mean square radii and quadrupole deformation parameter are estimated and compared with the available experimental data. The predicted results of both the formalisms are well comparable with the experimental observations. The analysis of density profiles of these light mass nuclei suggest that22 O,23F,34 Si and46Ar have bubble like structure.展开更多
基金Project(51676087)supported by the National Natural Science Foundation of China
文摘To seek and describe the influence of bubble size on geometric and motion characteristics of the bubble,six nozzles with different outlet diameters were selected to inject air into water and to produce different bubble sizes.High-speed photography in conjunction with an in-house bubble image processing code was used.During the evolution of the bubble,bubble shape,traveling trajectory and the variation of bubble velocity were obtained.Bubble sizes acquired varied from0.25to8.69mm.The results show that after the bubble is separated from the nozzle,bubble shape sequentially experiences ellipsoidal shape,hat shape,mushroom shape and eventually the stable ellipsoidal shape.As the bubble size increases,the oscillation of the bubble surface is intensified.At the stabilization stage of bubble motion,bubble trajectories conform approximately to the sinusoidal function.Meanwhile,with the increase in bubble size,the bubble trajectory tends to be straightened and the influence of the horizontal bubble velocity component on the bubble trajectory attenuates.The present results explain the phenomena related to relatively large bubble size,which extends the existing relationship between the bubble terminal velocity and the equivalent bubble diameter.
基金supported by the National Natural Science Foundation of China(21978197)the aid of Opening Project of State Key Laboratory of Chemical Engineering of China(SKLCh E-21Z03)。
文摘The deformation of moving slug bubbles and its influence on the bubble breakup dynamics in microchannel were studied.Three bubble morphologies were found in the experiment:slug,dumbbell and grenade shapes.The viscosity effect of continuous phase aggravates the velocity difference between the fluid near the wall and the bubble,resulting in that the continuous phase near the bubble head flows towards and squeezes the bubble tail,which causes the deformation of bubbles.Moreover,the experimental results show that the deformation of bubbles could significa ntly prolo ng the bubble breakup period at the downstream Y-junction.There exists the critical capillary number Ca_(Cr )for the asymmetric breakup of grenade bubbles,Ca_(Cr )increases with the rise of flow rate and viscosity of the continuous phase.
文摘We study the structural properties of some light mass nuclei using two different formalisms(i) a recently developed simple effective interaction in the frame work of microscopic non-relativistic Hartree-Fock method and(ii)the well-known relativistic mean field approach with NL3 parameter set. The bulk properties like binding energy, root mean square radii and quadrupole deformation parameter are estimated and compared with the available experimental data. The predicted results of both the formalisms are well comparable with the experimental observations. The analysis of density profiles of these light mass nuclei suggest that22 O,23F,34 Si and46Ar have bubble like structure.