The influence of degenerate four-wave mixing (FWM) on the performance of supercontinuum-based multiwavelength optical source has been investigated in detail experimentally and theoretically. Numerical simulation res...The influence of degenerate four-wave mixing (FWM) on the performance of supercontinuum-based multiwavelength optical source has been investigated in detail experimentally and theoretically. Numerical simulation results show that the degenerate FWM effect has a deteriorative influence on the spectral uniformity and the optical signal-to-noise ratio (OSNR) of supercontinuum-based optical source, and by suppressing degenerate FWM effect the performance enhancement of the supercontinuum can be achieved successfully. These results are also confirmed by our experiments. Experimentally, by suppressing degenerate FWM the crosstalk of adjacent channels to the filtered channel can be reduced by as much as 15 dB, and consequently the measured receiver sensitivity at 10 Gbit/s for the filtered optical source is improved from -1.7 to -17.8 dBm.展开更多
Carrier recovery time is a key parameter that determines the performance of a semiconductor optical amplifier (SOA). A measurement method of carrier recovery time in SOA based on a nearly degenerate four-wave mixing...Carrier recovery time is a key parameter that determines the performance of a semiconductor optical amplifier (SOA). A measurement method of carrier recovery time in SOA based on a nearly degenerate four-wave mixing of narrowband amplified spontaneous emission (ASE) spectra is presented. The results show the carrier times are 50.2, 44.6, and 23.6 ps when the injected currents are 120, 180, and 240 mA, respectively, which are in agreement with the nominal values of the sample.展开更多
We report on the enhancement of phase conjugation degenerate four-wave mixing(DFWM) in hot atomic Rb vapor by using a Bessel beam as the probe beam. The Bessel beam was generated using cross-phase modulation based on ...We report on the enhancement of phase conjugation degenerate four-wave mixing(DFWM) in hot atomic Rb vapor by using a Bessel beam as the probe beam. The Bessel beam was generated using cross-phase modulation based on the thermal nonlinear optical effect. Our results demonstrated that the DFWM signal generated by the Bessel beam is about twice as large as that generated by the Gaussian beam, which can be attributed to the extended depth and tight focusing features of the Bessel beam. We also found that a DFWM signal with reasonable intensity can be detected even when the Bessel beam encounters an obstruction on its way, thanks to the selfhealing property of the Bessel beam. This work not only indicates that DFWM using a Bessel beam would be of great potential in the fields of high-fidelity communication, adaptive optics, and so on, but also suggests that a Bessel beam would be of significance to enhance the nonlinear process, especially in thick and scattering media.展开更多
A novel soluble π-conjugated polymer, poly [(3-acetylpyrrole-2, 5-diyl) p-(N, N-dimethylamino) azobenzylidene] (PAPDMAABE), was synthesized by condensation of 3-acetylpyrrole with 4-aldehyde-4'-dimethylaminoaz...A novel soluble π-conjugated polymer, poly [(3-acetylpyrrole-2, 5-diyl) p-(N, N-dimethylamino) azobenzylidene] (PAPDMAABE), was synthesized by condensation of 3-acetylpyrrole with 4-aldehyde-4'-dimethylaminoazobenzene (ADMAA). The chemical structure of PAPDMAABE was characterized by Fourier transform infrared spectroscopy (FTIR), ^1H-NMR, and UV-Vis-NIR spectra. Transmission electron microscope (TEM) analysis for PAPDMAABE indicates that part of PAPDMAABE is in crystal state, due to the short-range order of the polymer. Thermogravimetric analysis (TGA) curve shows that the polymer has good thermal stability and its decomposition temperature is 248℃. The optical band gap of PAPDMAABE obtained from the optical absorption spectrum is about 1.73 eV. The resonant third-order nonlinear optical property of PAPDMAABE at 532 nm was studied using degenerate four-wave mixing (DFWM) technique. The resonant third-order nonlinear optical susceptibility of the polymer is about 7.48×10^-8 esu.展开更多
An optically active monomer containing azobenzene moieties with chiral group (s-2-methyl-butyl), 4-[2-(methacryloyloxy)ethyloxy] -4'-(s-2-methyl-1-butyloxycarbonyl) azobenzene (M1) was synthesized. Polymer (PM1) p...An optically active monomer containing azobenzene moieties with chiral group (s-2-methyl-butyl), 4-[2-(methacryloyloxy)ethyloxy] -4'-(s-2-methyl-1-butyloxycarbonyl) azobenzene (M1) was synthesized. Polymer (PM1) possessing optical phase conjugated response was obtained by homopolymerization of the optically active monomer (M1) using free radical polymerization. The polymer was very soluble in common solvents and good optical quality films could be easily fabricated by spin coating. The optical phase conjugated responses of the polymer PM1 were measured by degenerate four-wave mixing (DFWM). In comparison with polymer containing no chiral group, it was found from the preliminary measurement of photoisomeric change that optical phase conjugated response of the PM1 in the long-range order hexagonal symmetry microstructure could be easily controlled by choosing the appropriate polarization direction of the irradiating beams (514.5 nm) and the irradiating number, presumably due to the chiral group in the PM1 molecular structure. For the case of the polymer investigated here, a chiral group side chain was introduced to increase optical phase conjugated response intensity with different polarization directions of the irradiating beams, which aims originally at searching for a new photoactive material.展开更多
A novel soluble π-conjugated polymer, poly[(3-octanoylpyrrole-2,5-diyl)-p-(N,N-dimethylamino)benzylidene](POPDMABE), was synthesized firstly by the condensation of 3-octanoylpyrrole with para-dimethylaminobenzaldehyd...A novel soluble π-conjugated polymer, poly[(3-octanoylpyrrole-2,5-diyl)-p-(N,N-dimethylamino)benzylidene](POPDMABE), was synthesized firstly by the condensation of 3-octanoylpyrrole with para-dimethylaminobenzaldehyde. The chemical structure of the polymer was characterized by FTIR and 1H NMR spectrometries. The polymer is a potential nonlinear optical(NLO) material. According to the function of optical forbidden band gap(E_g) and photon energy(hν), the optical forbidden band gaps of the polymer before and after ion implantation were calculated. The resonant third-order nonlinear optical properties of POPDMABE before and after ion implantation were also studied by using the degenerate four-wave mixing(DFWM) technique at 532 nm. When the energy is 25 keV and the dose is 2.2×10 17 ions/cm 2, the {polymer′s} optical forbidden band gap is about 1.63 eV which is smaller than that of the non-implanted sample(1.98 eV) and the resonant third-order NLO susceptibility of POPDMABE is about 4.3×10 -7 esu, 1 order of magnitude higher than that of the non-implanted sample(4.1×10 -8 esu). The results show that nitrogen ion implantation is an effective method to improve the resonant third-order NLO property of the polymer.展开更多
The fully oxidized state of polyaniline (PANI), pernigraniline (PN), was synthesized by oxidation of the emeraldine base form of PAM dissolved in NMP solvent with m-chloroperoxybenzoic acid. The resulted PN was charac...The fully oxidized state of polyaniline (PANI), pernigraniline (PN), was synthesized by oxidation of the emeraldine base form of PAM dissolved in NMP solvent with m-chloroperoxybenzoic acid. The resulted PN was characterized by FTIR and UV-Visible spectra. The third-order nonlinear optical properties of PN in concentrated sulfuric acid (PN/H2SO4) were measured by a degenerated four wave mixing (DFWM) method. The results obtained suggest that the soliton-pair intermediate state associated with the degenerated state does not play a major role in the third order nonlinear optical properties of PANI.展开更多
We theoretically investigate the frequency-nondegenerate and frequency degenerate squeezed lights with a four-wave mixing process(4WM)driven by two pump fields crossing at a small angle.Different from a 4WM process dr...We theoretically investigate the frequency-nondegenerate and frequency degenerate squeezed lights with a four-wave mixing process(4WM)driven by two pump fields crossing at a small angle.Different from a 4WM process driven by a single pump field,the refractive index of the corresponding probe field,np,can be converted to a value that is greater than 1 or less than 1 by an angle adjustment.In the new region with np<1,the bandwidth of the gain is relatively large due to the slow change in the refractive index with the two-photon detuning.In this region with an exchange of the roles of the pump and probe beams,the frequency degenerate and spatial nondegenerate twin beams can be generated,which has potential application in quantum information and quantum metrology.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60577033), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No 20050003010) and the Basic Research Foundation of Tsinghua National Laboratory for Information Science and Technology.
文摘The influence of degenerate four-wave mixing (FWM) on the performance of supercontinuum-based multiwavelength optical source has been investigated in detail experimentally and theoretically. Numerical simulation results show that the degenerate FWM effect has a deteriorative influence on the spectral uniformity and the optical signal-to-noise ratio (OSNR) of supercontinuum-based optical source, and by suppressing degenerate FWM effect the performance enhancement of the supercontinuum can be achieved successfully. These results are also confirmed by our experiments. Experimentally, by suppressing degenerate FWM the crosstalk of adjacent channels to the filtered channel can be reduced by as much as 15 dB, and consequently the measured receiver sensitivity at 10 Gbit/s for the filtered optical source is improved from -1.7 to -17.8 dBm.
基金Project supported by National High Technology Research and Development Program of China (Grant No. 2006AA03Z414)the National Natural Science Foundation of China (Grant No. 60877056)the Science Fund for Distinguished Young Scholars of Hubei Province of China (Grant No. 2006ABB017)
文摘Carrier recovery time is a key parameter that determines the performance of a semiconductor optical amplifier (SOA). A measurement method of carrier recovery time in SOA based on a nearly degenerate four-wave mixing of narrowband amplified spontaneous emission (ASE) spectra is presented. The results show the carrier times are 50.2, 44.6, and 23.6 ps when the injected currents are 120, 180, and 240 mA, respectively, which are in agreement with the nominal values of the sample.
基金National Natural Science Foundation of China(NSFC)(61475125)Natural Science Foundation of Shaanxi Province(2017JQ6066)+1 种基金Education Department of Shaanxi Province(16JK1776)Northwest University Doctorate Dissertation of Excellence Funds(YYB17006)
文摘We report on the enhancement of phase conjugation degenerate four-wave mixing(DFWM) in hot atomic Rb vapor by using a Bessel beam as the probe beam. The Bessel beam was generated using cross-phase modulation based on the thermal nonlinear optical effect. Our results demonstrated that the DFWM signal generated by the Bessel beam is about twice as large as that generated by the Gaussian beam, which can be attributed to the extended depth and tight focusing features of the Bessel beam. We also found that a DFWM signal with reasonable intensity can be detected even when the Bessel beam encounters an obstruction on its way, thanks to the selfhealing property of the Bessel beam. This work not only indicates that DFWM using a Bessel beam would be of great potential in the fields of high-fidelity communication, adaptive optics, and so on, but also suggests that a Bessel beam would be of significance to enhance the nonlinear process, especially in thick and scattering media.
基金the National Natural Science Foundation of China for financial support of this work(No.60277002).
文摘A novel soluble π-conjugated polymer, poly [(3-acetylpyrrole-2, 5-diyl) p-(N, N-dimethylamino) azobenzylidene] (PAPDMAABE), was synthesized by condensation of 3-acetylpyrrole with 4-aldehyde-4'-dimethylaminoazobenzene (ADMAA). The chemical structure of PAPDMAABE was characterized by Fourier transform infrared spectroscopy (FTIR), ^1H-NMR, and UV-Vis-NIR spectra. Transmission electron microscope (TEM) analysis for PAPDMAABE indicates that part of PAPDMAABE is in crystal state, due to the short-range order of the polymer. Thermogravimetric analysis (TGA) curve shows that the polymer has good thermal stability and its decomposition temperature is 248℃. The optical band gap of PAPDMAABE obtained from the optical absorption spectrum is about 1.73 eV. The resonant third-order nonlinear optical property of PAPDMAABE at 532 nm was studied using degenerate four-wave mixing (DFWM) technique. The resonant third-order nonlinear optical susceptibility of the polymer is about 7.48×10^-8 esu.
基金This work was supported by National Natural Science Foundation of China (No. 59873001)Scientific Foundation for Returned Overseas Chinese Scholars, Ministry of Education.
文摘An optically active monomer containing azobenzene moieties with chiral group (s-2-methyl-butyl), 4-[2-(methacryloyloxy)ethyloxy] -4'-(s-2-methyl-1-butyloxycarbonyl) azobenzene (M1) was synthesized. Polymer (PM1) possessing optical phase conjugated response was obtained by homopolymerization of the optically active monomer (M1) using free radical polymerization. The polymer was very soluble in common solvents and good optical quality films could be easily fabricated by spin coating. The optical phase conjugated responses of the polymer PM1 were measured by degenerate four-wave mixing (DFWM). In comparison with polymer containing no chiral group, it was found from the preliminary measurement of photoisomeric change that optical phase conjugated response of the PM1 in the long-range order hexagonal symmetry microstructure could be easily controlled by choosing the appropriate polarization direction of the irradiating beams (514.5 nm) and the irradiating number, presumably due to the chiral group in the PM1 molecular structure. For the case of the polymer investigated here, a chiral group side chain was introduced to increase optical phase conjugated response intensity with different polarization directions of the irradiating beams, which aims originally at searching for a new photoactive material.
文摘A novel soluble π-conjugated polymer, poly[(3-octanoylpyrrole-2,5-diyl)-p-(N,N-dimethylamino)benzylidene](POPDMABE), was synthesized firstly by the condensation of 3-octanoylpyrrole with para-dimethylaminobenzaldehyde. The chemical structure of the polymer was characterized by FTIR and 1H NMR spectrometries. The polymer is a potential nonlinear optical(NLO) material. According to the function of optical forbidden band gap(E_g) and photon energy(hν), the optical forbidden band gaps of the polymer before and after ion implantation were calculated. The resonant third-order nonlinear optical properties of POPDMABE before and after ion implantation were also studied by using the degenerate four-wave mixing(DFWM) technique at 532 nm. When the energy is 25 keV and the dose is 2.2×10 17 ions/cm 2, the {polymer′s} optical forbidden band gap is about 1.63 eV which is smaller than that of the non-implanted sample(1.98 eV) and the resonant third-order NLO susceptibility of POPDMABE is about 4.3×10 -7 esu, 1 order of magnitude higher than that of the non-implanted sample(4.1×10 -8 esu). The results show that nitrogen ion implantation is an effective method to improve the resonant third-order NLO property of the polymer.
基金This work was partly supported by NNSFC,Chinese Academy of Sciences and Director Foundation of the Institute of Chemistry,Academia Sinica
文摘The fully oxidized state of polyaniline (PANI), pernigraniline (PN), was synthesized by oxidation of the emeraldine base form of PAM dissolved in NMP solvent with m-chloroperoxybenzoic acid. The resulted PN was characterized by FTIR and UV-Visible spectra. The third-order nonlinear optical properties of PN in concentrated sulfuric acid (PN/H2SO4) were measured by a degenerated four wave mixing (DFWM) method. The results obtained suggest that the soliton-pair intermediate state associated with the degenerated state does not play a major role in the third order nonlinear optical properties of PANI.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974111,11474095,11874152,11604069,91536114,11654005,and 11234003)the Fundamental Research Funds for the Central Universities,China,the Science Foundation of Shanghai,China(Grant No.17ZR1442800)the National Key Research and Development Program of China(Grant No.2016YFA0302001).
文摘We theoretically investigate the frequency-nondegenerate and frequency degenerate squeezed lights with a four-wave mixing process(4WM)driven by two pump fields crossing at a small angle.Different from a 4WM process driven by a single pump field,the refractive index of the corresponding probe field,np,can be converted to a value that is greater than 1 or less than 1 by an angle adjustment.In the new region with np<1,the bandwidth of the gain is relatively large due to the slow change in the refractive index with the two-photon detuning.In this region with an exchange of the roles of the pump and probe beams,the frequency degenerate and spatial nondegenerate twin beams can be generated,which has potential application in quantum information and quantum metrology.