期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
LOWER BOUNDS OF DIRICHLET EIGENVALUES FOR A CLASS OF FINITELY DEGENERATE GRUSHIN TYPE ELLIPTIC OPERATORS 被引量:2
1
作者 陈化 陈洪葛 +1 位作者 段忆芮 胡鑫 《Acta Mathematica Scientia》 SCIE CSCD 2017年第6期1653-1664,共12页
Let Ω be a bounded open domain in Rn with smooth boundary Ω, X =(X1,X2,... ,Xm) be a system of real smooth vector fields defined on Ω and the bound-ary Ω is non-characteristic for X. If X satisfies the HSrmande... Let Ω be a bounded open domain in Rn with smooth boundary Ω, X =(X1,X2,... ,Xm) be a system of real smooth vector fields defined on Ω and the bound-ary Ω is non-characteristic for X. If X satisfies the HSrmander's condition, then the vectorfield is finitely degenerate and the sum of square operator △X =m∑j=1 X2 j is a finitely de-generate elliptic operator. In this paper, we shall study the sharp estimate of the Dirichlet eigenvalue for a class of general Grushin type degenerate elliptic operators △x on Ω. 展开更多
关键词 Dirichlet eigenvalues finitely degenerate elliptic operators HSrmander's con-dition sub-elliptic estimate Grushin type operator
下载PDF
Existence and Uniqueness of Renormalized Solution of Nonlinear Degenerated Elliptic Problems
2
作者 Youssef Akdim Chakir Allalou 《Analysis in Theory and Applications》 2014年第3期318-343,共26页
In this paper, We study a general class of nonlinear degenerated elliptic problems associated with the differential inclusion β(u)-div(α(x, Du)+F(u)) ∈ f in fΩ, where f ∈ L1 (Ω). A vector field a(.,.... In this paper, We study a general class of nonlinear degenerated elliptic problems associated with the differential inclusion β(u)-div(α(x, Du)+F(u)) ∈ f in fΩ, where f ∈ L1 (Ω). A vector field a(.,.) is a Carath6odory function. Using truncation techniques and the generalized monotonicity method in the functional spaces we prove the existence of renormalized solutions for general L1-data. Under an additional strict monotonicity assumption uniqueness of the renormalized solution is established. 展开更多
关键词 Weighted Sobolev spaces Hardy inequality TRUNCATIONS maximal monotone graphe degenerated elliptic operators.
下载PDF
COMPARISON,SYMMETRY AND MONOTONICITY RESULTS FOR SOME DEGENERATE ELLIPTIC OPERATORS IN CARNOT-CARATHEODORY SPACES 被引量:1
3
作者 GEYUXIN YEDONG ZHOUFENG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2002年第3期361-372,共12页
This paper studies the properties of solutions of quasilinear equations involving the p-laplacian type operator in general Carnot-Caratheodory spaces. The authors show some comparison results for solutions of the rele... This paper studies the properties of solutions of quasilinear equations involving the p-laplacian type operator in general Carnot-Caratheodory spaces. The authors show some comparison results for solutions of the relevant differential inequalities and use them to get some symmetry and monotonicity properties of solutions, in bounded or unbounded domains. 展开更多
关键词 Carnot-Caratheodory space SYMMETRY MONOTONICITY degenerate elliptic operator
原文传递
Dirichlet Eigenvalue Problem of Degenerate Elliptic Operators with Non-Smooth Coefficients
4
作者 Hua Chen Hong-Ge Chen Jin-Ning Li 《Communications in Mathematical Research》 CSCD 2022年第4期498-515,共18页
The aim of this review is to introduce some recent results in eigenvalues problems for a class of degenerate elliptic operators with non-smooth coefficients,we present the explicit estimates of the lower bound and upp... The aim of this review is to introduce some recent results in eigenvalues problems for a class of degenerate elliptic operators with non-smooth coefficients,we present the explicit estimates of the lower bound and upper bound for its Dirichlet eigenvalues. 展开更多
关键词 Dirichlet eigenvalues weighted Sobolev spaces degenerate elliptic operators homogeneous dimension
原文传递
Multiplicity of solutions for the semilinear subelliptic Dirichlet problem
5
作者 Hua Chen Hong-Ge Chen +1 位作者 Jin-Ning Li Xin Liao 《Science China Mathematics》 SCIE CSCD 2024年第3期475-504,共30页
In this paper,we study the semilinear subelliptic equation{−△Xu=f(x,u)+g(x,u)inΩ,u=0 on∂Ω,where△X=−∑m i=1 Xi∗Xi is the self-adjoint Hormander operator associated with the vector fields X=(X_(1),X_(2),...,X_(m))sati... In this paper,we study the semilinear subelliptic equation{−△Xu=f(x,u)+g(x,u)inΩ,u=0 on∂Ω,where△X=−∑m i=1 Xi∗Xi is the self-adjoint Hormander operator associated with the vector fields X=(X_(1),X_(2),...,X_(m))satisfying the Hormander's condition,f(x,u)∈C(Ω×R),g(x,u)is a Carathéodory function onΩ×R,andΩis an open bounded domain in R~n with smooth boundary.Combining the perturbation from the symmetry method with the approaches involving the eigenvalue estimate and the Morse index in estimating the minimax values,we obtain two kinds of existence results for multiple weak solutions to the problem above.Furthermore,we discuss the difference between the eigenvalue estimate approach and the Morse index approach in degenerate situations.Compared with the classical elliptic cases,both approaches here have their own strengths in the degenerate cases.This new phenomenon implies that the results in general degenerate cases would be quite different from the situations in classical elliptic cases. 展开更多
关键词 degenerate elliptic equations Hormander operators perturbation method Morse index
原文传递
Lower Bounds of Dirichlet Eigenvalues for General Grushin Type Bi-Subelliptic Operators
6
作者 Hua Chen Hongge Chen +1 位作者 Junfang Wang Nana Zhang 《Analysis in Theory and Applications》 CSCD 2019年第1期66-84,共19页
Let Q be a bounded open domain in R^n with smooth boundaryаΩ.Let X=(X1,X2…,Xm)be a system of general Grushin type vector fields defined onΩand the boundaryаΩis non-characteristic for X.For△x=∑j=1^mXj^2,we den... Let Q be a bounded open domain in R^n with smooth boundaryаΩ.Let X=(X1,X2…,Xm)be a system of general Grushin type vector fields defined onΩand the boundaryаΩis non-characteristic for X.For△x=∑j=1^mXj^2,we denoteλk as the k-th eigenvalue for the bi-subelliptic operator△X2^2 onΩ.In this paper,by using the sharp sub-elliptic estimates and maximally hypoeliptic estimates,we give the optimal lower bound estimates ofλk for the operatork△X^2. 展开更多
关键词 Eigenvalues degenerATE elliptic operators sub-elliptic ESTIMATE MAXIMALLY hypoelliptic ESTIMATE bi-subelliptic operator
原文传递
A degenerate elliptic system with variable exponents
7
作者 Lingju Kong 《Science China Mathematics》 SCIE CSCD 2019年第7期1373-1390,共18页
We study a degenerate elliptic system with variable exponents. Using the variational approach and some recent theory on weighted Lebesgue and Sobolev spaces with variable exponents, we prove the existence of at least ... We study a degenerate elliptic system with variable exponents. Using the variational approach and some recent theory on weighted Lebesgue and Sobolev spaces with variable exponents, we prove the existence of at least two distinct nontrivial weak solutions of the system. Several consequences of the main theorem are derived;in particular, the existence of at lease two distinct nontrivial non-negative solutions is established for a scalar degenerate problem. One example is provided to show the applicability of our results. 展开更多
关键词 degenerATE elliptic systems degenerATE p(x)-Laplacian operator weak solutions weighted variable EXPONENT spaces mountain pass LEMMA
原文传递
Positive Solutions for Asymptotically Linear Cone-Degenerate Elliptic Equations
8
作者 Hua CHEN Peng LUO Shuying TIAN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2022年第5期685-718,共34页
In this paper,the authors study the asymptotically linear elliptic equation on manifold with conical singularities-ΔBu+λu=a(z)f(u),u≥0 in R+N,where N=n+1≥3,λ>0,z=(t,x_(1),…,x_(n)),and ΔB=(t■t)^(2)+■^(2)x_(... In this paper,the authors study the asymptotically linear elliptic equation on manifold with conical singularities-ΔBu+λu=a(z)f(u),u≥0 in R+N,where N=n+1≥3,λ>0,z=(t,x_(1),…,x_(n)),and ΔB=(t■t)^(2)+■^(2)x_(1)+…+■^(2)x_(n).Combining properties of cone-degenerate operator,the Pohozaev manifold and qualitative properties of the ground state solution for the limit equation,we obtain a positive solution under some suitable conditions on a and f. 展开更多
关键词 Asymptotically linear Pohozaev identity Cone degenerate elliptic operators
原文传递
一类二阶偏微分方程初值问题粘性解的存在性 被引量:2
9
作者 刘长河 郇中丹 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 1997年第4期453-456,共4页
利用非线性算子半群理论,证明了二阶抛物型方程的初值问题的粘性解的存在性,其中u0(x)∈BUC(RN),F∈C(RN×S*(N)),且F是退化椭圆的.
关键词 粘性解 耗散算子 偏微分方程 存在性 初值问题
下载PDF
一类退化型Schrodinger方程解的连续性
10
作者 金永阳 戴欣荣 《数学物理学报(A辑)》 CSCD 北大核心 2004年第2期238-245,共8页
该文通过一种基本的分析方法 ,得到了一类退化型 Schrodinger方程解的连续性结果 ,方程的类型为 :Lu+ vu=( fi) xi,其中 L为一退化椭圆算子 ,v属于某一 Kato类的类比 ,而 fi 属于某一加权 Lp 空间 .
关键词 退化椭圆算子 很弱解 GREEN函数
下载PDF
一类双权退化椭圆算子的基本解及Hardy不等式
11
作者 王胜军 韩亚洲 《西南民族大学学报(自然科学版)》 CAS 2008年第3期410-414,共5页
首先建立了比广义Baoendi-Grushin向量场更为广泛的双权退化向量场构成的双权退化椭圆算子的基本解,然后通过构造适当的辅助函数,结合kombe的方法,证明了Hardy不等式.
关键词 双权退化向量场 双权退化椭圆算子 基本解 HARDY不等式
下载PDF
一类退化椭圆方程的弱解的正则性估计
12
作者 金永阳 《浙江大学学报(理学版)》 CAS CSCD 2000年第4期372-376,共5页
本文讨论了方程 :L u=fw的弱解的一个正则性估计 ,其中 ,L为一退化椭圆算子 ,w∈A2 或满足(QC)条件 ,f满足条件|f |log+ |f |∈ L1(Ω ,w) .
关键词 弱解 共轭算子 退化椭圆型方程 正则性估计
下载PDF
一类退化p次椭圆算子的基本解及Hardy不等式 被引量:1
13
作者 欧亚飞 钮鹏程 《西南民族大学学报(自然科学版)》 CAS 2007年第5期1001-1005,共5页
首先建立了由广义Baoendi-Grushin向量场构成的退化p-次椭圆算子在p=Q时的基本解,然后通过构造合适的辅助函数,结合Kombe的方法,证明了p=Q时的Hardy不等式.
关键词 广义Baoendi-Grushin向量场 退化P-次椭圆算子 基本解 HARDY不等式
下载PDF
退化松弛的Dirichlet问题 被引量:1
14
作者 刘晓风 《浙江大学学报(理学版)》 CAS CSCD 2000年第2期141-148,共8页
在文献 [1~ 3 ]中讨论了松弛的 Dirichlet问题 L u +μu =ν.本文将其中的主部 L推广到了退化椭圆型算子的情况 。
关键词 退化椭圆型算子 退化松驰 DIRICHLET问题
下载PDF
关于一类双权退化椭圆算子的Hardy不等式
15
作者 吴小吟 钮鹏程 《西南民族大学学报(自然科学版)》 CAS 2005年第5期669-673,共5页
研究一类双权退化椭圆算子的Hardy不等式,这类算子比广义Baouendi-Gruxhin算子L=△x+|x|2a△y(a>0,x∈Rn,y∈Rm)更为广泛.结果包含了已有文献中得到的不等式.
关键词 Hardy等式 向量场 退化椭圆算子 双权
下载PDF
退化松弛的Dirichlet问题中的能量估计与解的正则性
16
作者 刘晓风 《浙江大学学报(理学版)》 CAS CSCD 2000年第3期247-256,共10页
在文 [1]中 ,已给出了退化松弛的 Dirichlet问题的定义以及关于解的若干基本性质 .本文将进一步讨论解的性质 ,包括 Wiener准则 。
关键词 退化松弛 DIRICHLET问题 正则性 能量估计
下载PDF
一类非线性退缩椭圆型方程的Dirichlet问题(Ⅲ)
17
作者 孙同森 《青岛大学学报(自然科学版)》 CAS 1995年第4期58-64,共7页
本文利用临界点理论,在一类 Hilbert 空间中,讨论了一类退缩椭圆型边值问题,获得一些解的存在性定理.
关键词 退缩椭圆算子 椭圆型方程 狄利克雷问题 非线性
下载PDF
一类超线性退缩椭圆方程解的存在性(Ⅱ)
18
作者 孙同森 《青岛大学学报(自然科学版)》 CAS 1995年第3期26-29,共4页
设ΩRN(N≥2)是有界光滑区域,本文讨论Dirichlet问题在适当条件下,证明了该问题解的存在性定理.
关键词 退缩椭圆算子 椭圆型方程 存在性
下载PDF
A New Elliptic Measure on Lower Dimensional Sets
19
作者 Guy DAVID Joseph FENEUIL Svitlana MAYBORODA 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2019年第6期876-902,共27页
The recent years have seen a beautiful breakthrough culminating in a comprehensive understanding of certain scale-invariant properties of n-1 dimensional sets across analysis, geometric measure theory, and PDEs. The p... The recent years have seen a beautiful breakthrough culminating in a comprehensive understanding of certain scale-invariant properties of n-1 dimensional sets across analysis, geometric measure theory, and PDEs. The present paper surveys the first steps of a program recently launched by the authors and aimed at the new PDE approach to sets with lower dimensional boundaries. We define a suitable class of degenerate elliptic operators, explain our intuition, motivation, and goals, and present the first results regarding absolute continuity of the emerging elliptic measure with respect to the surface measure analogous to the classical theorems of C. Kenig and his collaborators in the case of co-dimension one. 展开更多
关键词 elliptic MEASURE in higher CODIMENSION degenerATE elliptic operators absolute continuity Dahlberg’s theorem DIRICHLET SOLVABILITY
原文传递
广义HEISENBERG-GREINER p-退化椭圆算子的一类带有余项的含权Hardy不等式
20
作者 王胜军 韩亚洲 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第5期89-96,共8页
研究了广义Heisenberg-Greiner p-退化椭圆算子的一类带有余项的含权Hardy不等式的推广问题.利用散度定理并选择恰当的向量场,得到一类带有余项的含权Hardy不等式.结合逼近的方法,给出了最佳常数的证明,进一步推广了已有的结果.
关键词 广义Heisenberg-Greiner p-退化椭圆算子 带有余项的含权Hardy不等式 最佳常数
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部