Axonal degeneration underlies many debilitating diseases including hereditary spastic paraplegia(HSP),a genetically and clinically diverse group of disorders characterized by spasticity and weakness of the lower extre...Axonal degeneration underlies many debilitating diseases including hereditary spastic paraplegia(HSP),a genetically and clinically diverse group of disorders characterized by spasticity and weakness of the lower extremities.HSP is one significant cause of chronic neurodisability due to the lack of effective treatments and a wide range of onset ages from early childhood to 70 years.展开更多
Frontotemporal lobar degeneration(FTLD)is a form of progressive dementia characterized by degeneration of the frontal and temporal lobes of the brain.This pathology involves a series of cognitive,behavioral,and neurol...Frontotemporal lobar degeneration(FTLD)is a form of progressive dementia characterized by degeneration of the frontal and temporal lobes of the brain.This pathology involves a series of cognitive,behavioral,and neurological symptoms that influence personality,decision-making ability,and language.展开更多
Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum.However,their use leads to irreversible hearing damage by causing apoptosis of hair cells as ...Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum.However,their use leads to irreversible hearing damage by causing apoptosis of hair cells as their direct target.In addition,the hearing damage caused by aminoglycosides involves damage of spiral ganglion neurons upon exposure.To investigate the mechanisms underlying spiral ganglion neuron degeneration induced by aminoglycosides,we used a C57BL/6J mouse model treated with kanamycin.We found that the mice exhibited auditory deficits following the acute loss of outer hair cells.Spiral ganglion neurons displayed hallmarks of pyroptosis and exhibited progressive degeneration over time.Transcriptomic profiling of these neurons showed significant upregulation of genes associated with inflammation and immune response,particularly those related to the NLRP3 inflammasome.Activation of the canonical pyroptotic pathway in spiral ganglion neurons was observed,accompanied by infiltration of macrophages and the release of proinflammatory cytokines.Pharmacological intervention targeting NLRP3 using Mcc950 and genetic intervention using NLRP3 knockout ameliorated spiral ganglion neuron degeneration in the injury model.These findings suggest that NLRP3 inflammasome-mediated pyroptosis plays a role in aminoglycoside-induced spiral ganglion neuron degeneration.Inhibition of this pathway may offer a potential therapeutic strategy for treating sensorineural hearing loss by reducing spiral ganglion neuron degeneration.展开更多
Age-related macular degeneration is a serious neurodegenerative disease of the retina that significantly impacts vision.Unfortunately,the specific pathogenesis remains unclear,and effective early treatment options are...Age-related macular degeneration is a serious neurodegenerative disease of the retina that significantly impacts vision.Unfortunately,the specific pathogenesis remains unclear,and effective early treatment options are consequently lacking.The microbiome is defined as a large ecosystem of microorganisms living within and coexisting with a host.The intestinal microbiome undergoes dynamic changes owing to age,diet,genetics,and other factors.Such dysregulation of the intestinal flora can disrupt the microecological balance,resulting in immunological and metabolic dysfunction in the host,and affecting the development of many diseases.In recent decades,significant evidence has indicated that the intestinal flora also influences systems outside of the digestive tract,including the brain.Indeed,several studies have demonstrated the critical role of the gut-brain axis in the development of brain neurodegenerative diseases,including Alzheimer’s disease and Parkinson’s disease.Similarly,the role of the“gut-eye axis”has been confirmed to play a role in the pathogenesis of many ocular disorders.Moreover,age-related macular degeneration and many brain neurodegenerative diseases have been shown to share several risk factors and to exhibit comparable etiologies.As such,the intestinal flora may play an important role in age-related macular degeneration.Given the above context,the present review aims to clarify the gut-brain and gut-eye connections,assess the effect of intestinal flora and metabolites on age-related macular degeneration,and identify potential diagnostic markers and therapeutic strategies.Currently,direct research on the role of intestinal flora in age-related macular degeneration is still relatively limited,while studies focusing solely on intestinal flora are insufficient to fully elucidate its functional role in age-related macular degeneration.Organ-on-a-chip technology has shown promise in clarifying the gut-eye interactions,while integrating analysis of the intestinal flora with research on metabolites through metabolomics and other techniques is crucial for understanding their potential mechanisms.展开更多
Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration.It causes local damage to photoreceptors,retinal pigment epithelium,and choroidal vessels,which leads to permanent central ...Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration.It causes local damage to photoreceptors,retinal pigment epithelium,and choroidal vessels,which leads to permanent central vision loss of patients with neovascular age-related macular degeneration.The pathogenesis of subretinal fibrosis is complex,and the underlying mechanisms are largely unknown.Therefore,there are no effective treatment options.A thorough understanding of the pathogenesis of subretinal fibrosis and its related mechanisms is important to elucidate its complications and explore potential treatments.The current article reviews several aspects of subretinal fibrosis,including the current understanding on the relationship between neovascular age-related macular degeneration and subretinal fibrosis;multimodal imaging techniques for subretinal fibrosis;animal models for studying subretinal fibrosis;cellular and non-cellular constituents of subretinal fibrosis;pathophysiological mechanisms involved in subretinal fibrosis,such as aging,infiltration of macrophages,different sources of mesenchymal transition to myofibroblast,and activation of complement system and immune cells;and several key molecules and signaling pathways participating in the pathogenesis of subretinal fibrosis,such as vascular endothelial growth factor,connective tissue growth factor,fibroblast growth factor 2,platelet-derived growth factor and platelet-derived growth factor receptor-β,transforming growth factor-βsignaling pathway,Wnt signaling pathway,and the axis of heat shock protein 70-Toll-like receptors 2/4-interleukin-10.This review will improve the understanding of the pathogenesis of subretinal fibrosis,allow the discovery of molecular targets,and explore potential treatments for the management of subretinal fibrosis.展开更多
A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to ...A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to examine the pathological changes and molecular mechanisms of retinal damage under microgravity.After 4 weeks of tail suspension,there were no notable alterations in retinal function and morphology,while after 8 weeks of tail suspension,significant reductions in retinal function were observed,and the outer nuclear layer was thinner,with abundant apoptotic cells.To investigate the mechanism underlying the degenerative changes that occurred in the outer nuclear layer of the retina,proteomics was used to analyze differentially expressed proteins in rat retinas after 8 weeks of tail suspension.The results showed that the expression levels of fibroblast growth factor 2(also known as basic fibroblast growth factor)and glial fibrillary acidic protein,which are closely related to Müller cell activation,were significantly upregulated.In addition,Müller cell regeneration and Müller cell gliosis were observed after 4 and 8 weeks,respectively,of simulated weightlessness.These findings indicate that Müller cells play an important regulatory role in retinal outer nuclear layer degeneration during weightlessness.展开更多
Degenerated endplate appears with cheese-like morphology and sensory innervation,contributing to low back pain and subsequently inducing intervertebral disc degeneration in the aged population.1 However,the origin and...Degenerated endplate appears with cheese-like morphology and sensory innervation,contributing to low back pain and subsequently inducing intervertebral disc degeneration in the aged population.1 However,the origin and development mechanism of the cheese-like morphology remain unclear.Here in this study,we report lumbar instability induced cartilage endplate remodeling is responsible for this pathological change.展开更多
Taurine is considered a non-essential amino acid because it is synthesized by most mammals.However,dietary intake of taurine may be necessary to achieve the physiological levels required for the development,maintenanc...Taurine is considered a non-essential amino acid because it is synthesized by most mammals.However,dietary intake of taurine may be necessary to achieve the physiological levels required for the development,maintenance,and function of certain tissues.Taurine may be especially important for the retina.The concentration of taurine in the retina is higher than that in any other tissue in the body and taurine deficiency causes retinal oxidative stress,apoptosis,and degeneration of photoreceptors and retinal ganglion cells.Low plasma taurine levels may also underlie retinal degeneration in humans and therefore,taurine administration could exert retinal neuroprotective effects.Taurine has antioxidant,anti-apoptotic,immunomodulatory,and calcium homeostasis-regulatory properties.This review summarizes the role of taurine in retinal health and disease,where it appears that taurine may be a promising nutraceutical.展开更多
AIM:To explore the usage of choroidal thickness measured by swept-source optical coherence tomography(SS-OCT)to detect myopic macular degeneration(MMD)in high myopic participants.METHODS:Participants with bilateral hi...AIM:To explore the usage of choroidal thickness measured by swept-source optical coherence tomography(SS-OCT)to detect myopic macular degeneration(MMD)in high myopic participants.METHODS:Participants with bilateral high myopia(≤−6 diopters)were recruited from a subset of the Guangzhou Zhongshan Ophthalmic Center-Brien Holden Vision Institute High Myopia Cohort Study.SS-OCT was performed to determine the choroidal thickness,and myopic maculopathy was graded by the International Meta-Analysis for Pathologic Myopia(META-PM)Classification.Presence of MMD was defined as META-PM category 2 or above.RESULTS:A total of 568 right eyes were included for analysis.Eyes with MMD(n=106,18.7%)were found to have older age,longer axial lengths(AL),higher myopic spherical equivalents(SE),and reduced choroidal thickness in each Early Treatment Diabetic Retinopathy Study(ETDRS)grid sector(P<0.001).The area under the receiver operating characteristic(ROC)curves(AUC)for subfoveal choroidal thickness(0.907)was greater than that of the model,including age,AL,and SE at 0.6249,0.8208,and 0.8205,respectively.The choroidal thickness of the inner and outer nasal sectors was the most accurate indicator of MMD(AUC of 0.928 and 0.923,respectively).An outer nasal sector choroidal thickness of less than 74μm demonstrated the highest odds of predicting MMD(OR=33.8).CONCLUSION:Choroidal thickness detects the presence of MMD with high agreement,particularly of the inner and outer nasal sectors of the posterior pole,which appears to be a biometric parameter more precise than age,AL,or SE.展开更多
Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide ...Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide closely involved in peripheral nerve regeneration.However,the mechanism by which neutrophil peptide 1 enhances nerve regeneration remains unclear.This study was designed to investigate the relationship between neutrophil peptide 1 and macrophages in vivo and in vitro in peripheral nerve crush injury.The functions of RAW 264.7 cells we re elucidated by Cell Counting Kit-8 assay,flow cytometry,migration assays,phagocytosis assays,immunohistochemistry and enzyme-linked immunosorbent assay.Axonal debris phagocytosis was observed using the CUBIC(Clear,Unobstructed Brain/Body Imaging Cocktails and Computational analysis)optical clearing technique during Wallerian degeneration.Macrophage inflammatory factor expression in different polarization states was detected using a protein chip.The results showed that neutrophil peptide 1 promoted the prolife ration,migration and phagocytosis of macrophages,and CD206 expression on the surfa ce of macrophages,indicating M2 polarization.The axonal debris clearance rate during Wallerian degeneration was enhanced after neutrophil peptide 1 intervention.Neutrophil peptide 1 also downregulated inflammatory factors interleukin-1α,-6,-12,and tumor necrosis factor-αin invo and in vitro.Thus,the results suggest that neutrophil peptide 1 activates macrophages and accelerates Wallerian degeneration,which may be one mechanism by which neutrophil peptide 1 enhances peripheral nerve regeneration.展开更多
Stroke can cause Wallerian degeneration in regions outside of the brain,particularly in the corticospinal tract.To investigate the fate of major glial cells and axons within affected areas of the corticospinal tract f...Stroke can cause Wallerian degeneration in regions outside of the brain,particularly in the corticospinal tract.To investigate the fate of major glial cells and axons within affected areas of the corticospinal tract following stroke,we induced photochemical infarction of the sensorimotor cortex leading to Wallerian degeneration along the full extent of the corticospinal tract.We first used a routine,sensitive marker of axonal injury,amyloid precursor protein,to examine Wallerian degeneration of the corticospinal tract.An antibody to amyloid precursor protein mapped exclusively to proximal axonal segments within the ischemic cortex,with no positive signal in distal parts of the corticospinal tract,at all time points.To improve visualization of Wallerian degeneration,we next utilized an orthograde virus that expresses green fluorescent protein to label the corticospinal tract and then quantitatively evaluated green fluorescent protein-expressing axons.Using this approach,we found that axonal degeneration began on day 3 post-stroke and was almost complete by 7 days after stroke.In addition,microglia mobilized and activated early,from day 7 after stroke,but did not maintain a phagocytic state over time.Meanwhile,astrocytes showed relatively delayed mobilization and a moderate response to Wallerian degeneration.Moreover,no anterograde degeneration of spinal anterior horn cells was observed in response to Wallerian degeneration of the corticospinal tract.In conclusion,our data provide evidence for dynamic,pathogenic spatiotemporal changes in major cellular components of the corticospinal tract during Wallerian degeneration.展开更多
Retinal degenerative diseases were a large group of diseases characterized by the primary death of retinal ganglion cells(RGCs).Recent studies had shown an interaction between autophagy and nucleotide-binding oligomer...Retinal degenerative diseases were a large group of diseases characterized by the primary death of retinal ganglion cells(RGCs).Recent studies had shown an interaction between autophagy and nucleotide-binding oligomerization domain-like receptor 3(NLRP3)inflammasomes,which may affect RGCs in retinal degenerative diseases.The NLRP3 inflammasome was a protein complex that,upon activation,produces caspase-1,mediating the apoptosis of retinal cells and promoting the occurrence and development of retinal degenerative diseases.Upregulated autophagy could inhibit NLRP3 inflammasome activation,while inhibited autophagy can promote NLRP3 inflammasome activation,which leaded to the accelerated emergence of drusen and lipofuscin deposition under the neurosensory retina.The activated NLRP3 inflammasome could further inhibit autophagy,thus forming a vicious cycle that accelerated the damage and death of RGCs.This review discussed the relationship between NLRP3 inflammasome and autophagy and its effects on RGCs in age-related macular degeneration,providing a new perspective and direction for the treatment of retinal diseases.展开更多
Modern neuroscience began from all reaching and fierce conflict between“neuronismo and reticulismo”——between neuronal and reticular theories of the organization of the nervous system;the conflict culminated in Dec...Modern neuroscience began from all reaching and fierce conflict between“neuronismo and reticulismo”——between neuronal and reticular theories of the organization of the nervous system;the conflict culminated in December of 1906 in Stockholm where Santiago Ramon y Cajal(the proponent of the neuronal doctrine)and Camillo Golgi(who advocated the syncytial reticular organization of neural networks)delivered their Noble prize lectures(Verkhratsky,2009).展开更多
Age-related macular degeneration(AMD)ranks third among the most common causes of blindness.As the most conventional and direct method for identifying AMD,color fundus photography has become prominent owing to its cons...Age-related macular degeneration(AMD)ranks third among the most common causes of blindness.As the most conventional and direct method for identifying AMD,color fundus photography has become prominent owing to its consistency,ease of use,and good quality in extensive clinical practice.In this study,a convolutional neural network(CSPDarknet53)was combined with a transformer to construct a new hybrid model,HCSP-Net.This hybrid model was employed to tri-classify color fundus photography into the normal macula(NM),dry macular degeneration(DMD),and wet macular degeneration(WMD)based on clinical classification manifestations,thus identifying and resolving AMD as early as possible with color fundus photography.To further enhance the performance of this model,grouped convolution was introduced in this study without significantly increasing the number of parameters.HCSP-Net was validated using an independent test set.The average precision of HCSPNet in the diagnosis of AMD was 99.2%,the recall rate was 98.2%,the F1-Score was 98.7%,the PPV(positive predictive value)was 99.2%,and the NPV(negative predictive value)was 99.6%.Moreover,a knowledge distillation approach was also adopted to develop a lightweight student network(SCSP-Net).The experimental results revealed a noteworthy enhancement in the accuracy of SCSP-Net,rising from 94%to 97%,while remarkably reducing the parameter count to a quarter of HCSP-Net.This attribute positions SCSP-Net as a highly suitable candidate for the deployment of resource-constrained devices,which may provide ophthalmologists with an efficient tool for diagnosing AMD.展开更多
Microglia,originating from primitive macrophages in the yolk sac,serves as both immune system defenders and regulators of homeostasis.These cells exhibit two primary polarization states:conventionally activated(M1)and...Microglia,originating from primitive macrophages in the yolk sac,serves as both immune system defenders and regulators of homeostasis.These cells exhibit two primary polarization states:conventionally activated(M1)and alternatively activated(M2).The polarization of microglia plays a crucial role in influencing inflammatory disorders,metabolic imbalances,and neural degeneration.This process is implicated in various aspects of ocular diseases,especially age-related macular degeneration(AMD),including inflammation,oxidative stress and pathological angiogenesis.The distinct functional phenotypes of microglia impact disease progression and prognosis.Thus,regulating the polarization or functional phenotype of microglia at different stages of AMD holds promise for personalized therapeutic approaches.This comprehensive review outlines the involvement of microglia polarization in both physiological and pathological conditions,emphasizing its relevance in AMD.The discussion underscores the potential of polarization as a foundation for personalized treatment strategies for AMD.展开更多
Age-related macular degeneration,a multifactorial inflammatory degenerative retinal disease,ranks as the leading cause of blindness in the elderly.Strikingly,there is a scarcity of curative therapies,especially for th...Age-related macular degeneration,a multifactorial inflammatory degenerative retinal disease,ranks as the leading cause of blindness in the elderly.Strikingly,there is a scarcity of curative therapies,especially for the atrophic advanced form of age-related macular degeneration,likely due to the lack of models able to fully recapitulate the native structure of the outer blood retinal barrier,the prime to rget tissue of age-related macular degeneration.Standard in vitro systems rely on 2D monocultures unable to adequately reproduce the structure and function of the outer blood retinal barrier,integrated by the dynamic interaction of the retinal pigment epithelium,the Bruch's membrane,and the underlying choriocapillaris.The Bruch's membrane provides structu ral and mechanical support and regulates the molecular trafficking in the outer blood retinal barrier,and therefo re adequate Bruch's membrane-mimics are key for the development of physiologically relevant models of the outer blood retinal barrie r.In the last years,advances in the field of biomaterial engineering have provided novel approaches to mimic the Bruch's membrane from a variety of materials.This review provides a discussion of the integrated properties and function of outer blood retinal barrier components in healt hy and age-related macular degeneration status to understand the requirements to adequately fabricate Bruch's membrane biomimetic systems.Then,we discuss novel materials and techniques to fabricate Bruch's membrane-like scaffolds for age-related macular degeneration in vitro modeling,discussing their advantages and challenges with a special focus on the potential of Bruch's membrane-like mimics based on decellularized tissue.展开更多
The retinal pigment epithelium(RPE)is fundamental to sustaining retinal homeostasis.RPE abnormality leads to visual defects and blindness,including age-related macular degeneration(AMD).Although breakthroughs have bee...The retinal pigment epithelium(RPE)is fundamental to sustaining retinal homeostasis.RPE abnormality leads to visual defects and blindness,including age-related macular degeneration(AMD).Although breakthroughs have been made in the treatment of neovascular AMD,effective intervention for atrophic AMD is largely absent.The adequate knowledge of RPE pathology is hindered by a lack of the patients'RPE datasets,especially at the single-cell resolution.In the current study,we delved into a large-scale single-cell resource of AMD donors,in which RPE cells were occupied in a substantial proportion.Bulk RNA-seq datasets of atrophic AMD were integrated to extract molecular characteristics of RPE in the pathogenesis of atrophic AMD.Both in vivo and in vitro models revealed that carboxypeptidase X,M14 family member 2(CPXM2),was specifically expressed in the RPE cells of atrophic AMD,which might be induced by oxidative stress and involved in the epithelial-mesenchymal transition of RPE cells.Additionally,silencing of CPXM2 inhibited the mesenchymal phenotype of RPE cells in an oxidative stress cell model.Thus,our results demonstrated that CPXM2 played a crucial role in regulating atrophic AMD and might serve as a potential therapeutic target for atrophic AMD.展开更多
Age-related macular degeneration(AMD)is a complicated disease that causes irreversible visual impairment.Increasing evidences pointed retinal pigment epithelia(RPE)cells as the decisive cell involved in the progress o...Age-related macular degeneration(AMD)is a complicated disease that causes irreversible visual impairment.Increasing evidences pointed retinal pigment epithelia(RPE)cells as the decisive cell involved in the progress of AMD,and the function of anti-oxidant capacity of PRE plays a fundamental physiological role.Nuclear factor erythroid 2 related factor 2(Nrf2)is a significant transcription factor in the cellular anti-oxidant system as it regulates the expression of multiple anti-oxidative genes.Its functions of protecting RPE cells against oxidative stress(OS)and ensuing physiological changes,including inflammation,mitochondrial damage and autophagy dysregulation,have already been elucidated.Understanding the roles of upstream regulators of Nrf2 could provide further insight to the OS-mediated AMD pathogenesis.For the first time,this review summarized the reported upstream regulators of Nrf2 in AMD pathogenesis,including proteins and miRNAs,and their underlying molecular mechanisms,which may help to find potential targets via regulating the Nrf2 pathway in the future research and further discuss the existing Nrf2 regulators proved to be beneficial in preventing AMD.展开更多
BACKGROUND Anti-vascular endothelial growth factor(anti-VEGF)therapy is critical for managing neovascular age-related macular degeneration(nAMD),but understanding factors influencing treatment efficacy is essential fo...BACKGROUND Anti-vascular endothelial growth factor(anti-VEGF)therapy is critical for managing neovascular age-related macular degeneration(nAMD),but understanding factors influencing treatment efficacy is essential for optimizing patient outcomes.AIM To identify the risk factors affecting anti-VEGF treatment efficacy in nAMD and develop a predictive model for short-term response.METHODS In this study,65 eyes of exudative AMD patients after anti-VEGF treatment for≥1 mo were observed using optical coherence tomography angiography.Patients were classified into non-responders(n=22)and responders(n=43).Logistic regression was used to determine independent risk factors for treatment response.A predictive model was created using the Akaike Information Criterion,and its performance was assessed with the area under the receiver operating characteristic curve,calibration curves,and decision curve analysis(DCA)with 500 bootstrap re-samples.RESULTS Multivariable logistic regression analysis identified the number of junction voxels[odds ratio=0.997,95%confidence interval(CI):0.993-0.999,P=0.010]as an independent predictor of positive anti-VEGF treatment outcomes.The predictive model incorporating the fractal dimension,number of junction voxels,and longest shortest path,achieved an area under the curve of 0.753(95%CI:0.622-0.873).Calibration curves confirmed a high agreement between predicted and actual outcomes,and DCA validated the model's clinical utility.CONCLUSION The predictive model effectively forecasts 1-mo therapeutic outcomes for nAMD patients undergoing anti-VEGF therapy,enhancing personalized treatment planning.展开更多
AIM:To describe the clinical,electrophysiological,and genetic features of an unusual case with an RDH12 homozygous pathogenic variant and reviewed the characteristics of the patients reported with the same variant.MET...AIM:To describe the clinical,electrophysiological,and genetic features of an unusual case with an RDH12 homozygous pathogenic variant and reviewed the characteristics of the patients reported with the same variant.METHODS:The patient underwent a complete ophthalmologic examination including best-corrected visual acuity,anterior segment and dilated fundus,visual field,spectral-domain optical coherence tomography(OCT)and electroretinogram(ERG).The retinal disease panel genes were sequenced through chip capture high-throughput sequencing and Sanger sequencing was used to confirm the result.Then we reviewed the characteristics of the patients reported with the same variant.RESULTS:A 30-year male presented with severe early retinal degeneration who complained night blindness,decreased visual acuity,vitreous floaters and amaurosis fugax.The best corrected vision was 0.04 OD and 0.12 OS,respectively.The fundus photo and OCT showed bilateral macular atrophy but larger areas of macular atrophy in the left eye.Autofluorescence shows bilateral symmetrical hypo-autofluorescence.ERG revealed that the amplitudes of a-and b-wave were severely decreased.Multifocal ERG showed decreased amplitudes in the local macular area.A homozygous missense variant c.146C>T(chr14:68191267)was found.The clinical characteristics of a total of 13 patients reported with the same pathologic variant varied.CONCLUSION:An unusual patient with a homozygous pathogenic variant in the c.146C>T of RDH12 which causes late-onset and asymmetric retinal degeneration are reported.The clinical manifestations of the patient with multimodal retinal imaging and functional examinations have enriched our understanding of this disease.展开更多
基金supported by the NIH grant(RO1 NS118066)the Blazer Foundation(to XJL)。
文摘Axonal degeneration underlies many debilitating diseases including hereditary spastic paraplegia(HSP),a genetically and clinically diverse group of disorders characterized by spasticity and weakness of the lower extremities.HSP is one significant cause of chronic neurodisability due to the lack of effective treatments and a wide range of onset ages from early childhood to 70 years.
基金funded by the project National Institute for Neurological Research(Programme EXCELES,ID Project No.LX22NPO5107)TEAMING:857560(EU)CZ.02.1.01/0.0/0.0/17_043/0009632(CZ)(to FA and JH)。
文摘Frontotemporal lobar degeneration(FTLD)is a form of progressive dementia characterized by degeneration of the frontal and temporal lobes of the brain.This pathology involves a series of cognitive,behavioral,and neurological symptoms that influence personality,decision-making ability,and language.
基金supported by the National Natural Science Foundation of China,Nos.81800919(to YX),82171140(to PW)the International Cooperation and Exchange of the National Natural Science Foundation of China,Nos.82020108008(to HS),81720108010(to SY).
文摘Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum.However,their use leads to irreversible hearing damage by causing apoptosis of hair cells as their direct target.In addition,the hearing damage caused by aminoglycosides involves damage of spiral ganglion neurons upon exposure.To investigate the mechanisms underlying spiral ganglion neuron degeneration induced by aminoglycosides,we used a C57BL/6J mouse model treated with kanamycin.We found that the mice exhibited auditory deficits following the acute loss of outer hair cells.Spiral ganglion neurons displayed hallmarks of pyroptosis and exhibited progressive degeneration over time.Transcriptomic profiling of these neurons showed significant upregulation of genes associated with inflammation and immune response,particularly those related to the NLRP3 inflammasome.Activation of the canonical pyroptotic pathway in spiral ganglion neurons was observed,accompanied by infiltration of macrophages and the release of proinflammatory cytokines.Pharmacological intervention targeting NLRP3 using Mcc950 and genetic intervention using NLRP3 knockout ameliorated spiral ganglion neuron degeneration in the injury model.These findings suggest that NLRP3 inflammasome-mediated pyroptosis plays a role in aminoglycoside-induced spiral ganglion neuron degeneration.Inhibition of this pathway may offer a potential therapeutic strategy for treating sensorineural hearing loss by reducing spiral ganglion neuron degeneration.
基金supported by the National Natural Science Foundation of China,No.82171080Nanjing Medical Science and Technology Development Project,No.YKK23264Postgraduate Research&Practice Innovation Program of Jiangsu Province,Nos.JX10414151,JX10414152(all to KL)。
文摘Age-related macular degeneration is a serious neurodegenerative disease of the retina that significantly impacts vision.Unfortunately,the specific pathogenesis remains unclear,and effective early treatment options are consequently lacking.The microbiome is defined as a large ecosystem of microorganisms living within and coexisting with a host.The intestinal microbiome undergoes dynamic changes owing to age,diet,genetics,and other factors.Such dysregulation of the intestinal flora can disrupt the microecological balance,resulting in immunological and metabolic dysfunction in the host,and affecting the development of many diseases.In recent decades,significant evidence has indicated that the intestinal flora also influences systems outside of the digestive tract,including the brain.Indeed,several studies have demonstrated the critical role of the gut-brain axis in the development of brain neurodegenerative diseases,including Alzheimer’s disease and Parkinson’s disease.Similarly,the role of the“gut-eye axis”has been confirmed to play a role in the pathogenesis of many ocular disorders.Moreover,age-related macular degeneration and many brain neurodegenerative diseases have been shown to share several risk factors and to exhibit comparable etiologies.As such,the intestinal flora may play an important role in age-related macular degeneration.Given the above context,the present review aims to clarify the gut-brain and gut-eye connections,assess the effect of intestinal flora and metabolites on age-related macular degeneration,and identify potential diagnostic markers and therapeutic strategies.Currently,direct research on the role of intestinal flora in age-related macular degeneration is still relatively limited,while studies focusing solely on intestinal flora are insufficient to fully elucidate its functional role in age-related macular degeneration.Organ-on-a-chip technology has shown promise in clarifying the gut-eye interactions,while integrating analysis of the intestinal flora with research on metabolites through metabolomics and other techniques is crucial for understanding their potential mechanisms.
基金supported by grants from National Key R&D Program of China,No.2023YFC2506100(to JZ)the National Natural Science Foundation of China,No.82171062(to JZ).
文摘Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration.It causes local damage to photoreceptors,retinal pigment epithelium,and choroidal vessels,which leads to permanent central vision loss of patients with neovascular age-related macular degeneration.The pathogenesis of subretinal fibrosis is complex,and the underlying mechanisms are largely unknown.Therefore,there are no effective treatment options.A thorough understanding of the pathogenesis of subretinal fibrosis and its related mechanisms is important to elucidate its complications and explore potential treatments.The current article reviews several aspects of subretinal fibrosis,including the current understanding on the relationship between neovascular age-related macular degeneration and subretinal fibrosis;multimodal imaging techniques for subretinal fibrosis;animal models for studying subretinal fibrosis;cellular and non-cellular constituents of subretinal fibrosis;pathophysiological mechanisms involved in subretinal fibrosis,such as aging,infiltration of macrophages,different sources of mesenchymal transition to myofibroblast,and activation of complement system and immune cells;and several key molecules and signaling pathways participating in the pathogenesis of subretinal fibrosis,such as vascular endothelial growth factor,connective tissue growth factor,fibroblast growth factor 2,platelet-derived growth factor and platelet-derived growth factor receptor-β,transforming growth factor-βsignaling pathway,Wnt signaling pathway,and the axis of heat shock protein 70-Toll-like receptors 2/4-interleukin-10.This review will improve the understanding of the pathogenesis of subretinal fibrosis,allow the discovery of molecular targets,and explore potential treatments for the management of subretinal fibrosis.
基金supported by the Army Laboratory Animal Foundation of China,No.SYDW[2020]22(to TC)the Shaanxi Provincial Key R&D Plan General Project of China,No.2022SF-236(to YM)the National Natural Science Foundation of China,No.82202070(to TC)。
文摘A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to examine the pathological changes and molecular mechanisms of retinal damage under microgravity.After 4 weeks of tail suspension,there were no notable alterations in retinal function and morphology,while after 8 weeks of tail suspension,significant reductions in retinal function were observed,and the outer nuclear layer was thinner,with abundant apoptotic cells.To investigate the mechanism underlying the degenerative changes that occurred in the outer nuclear layer of the retina,proteomics was used to analyze differentially expressed proteins in rat retinas after 8 weeks of tail suspension.The results showed that the expression levels of fibroblast growth factor 2(also known as basic fibroblast growth factor)and glial fibrillary acidic protein,which are closely related to Müller cell activation,were significantly upregulated.In addition,Müller cell regeneration and Müller cell gliosis were observed after 4 and 8 weeks,respectively,of simulated weightlessness.These findings indicate that Müller cells play an important regulatory role in retinal outer nuclear layer degeneration during weightlessness.
基金supported by National Natural Science Foundation of China (82172468,82372436 and 32301416)Natural Science Foundation of Jiangsu Province (BK20211326)Natural Science Fund for Colleges and Universities in Jiangsu Province (21KJB320009)。
文摘Degenerated endplate appears with cheese-like morphology and sensory innervation,contributing to low back pain and subsequently inducing intervertebral disc degeneration in the aged population.1 However,the origin and development mechanism of the cheese-like morphology remain unclear.Here in this study,we report lumbar instability induced cartilage endplate remodeling is responsible for this pathological change.
基金supported by Instituto de Salud CarlosⅢ(ISCⅢ):PI19/00203cofunded by ERDF+9 种基金"A way to make Europe"to MPVP and DGAP122/00900RD16/0008/0026 co-funded by ERDF"A way to make Europe"to MPVP and RD21/0002/0014financiado porla Unión Europea-NextGenerationEUFundación Robles Chillida to DGARED2018-102499-TPID201 9-106498GB-I00funded by MCIN/AEI/10.13039/501100011 033 to MVSIHU FOReSIGHT[ANR-18-IAHU-0001] to SP
文摘Taurine is considered a non-essential amino acid because it is synthesized by most mammals.However,dietary intake of taurine may be necessary to achieve the physiological levels required for the development,maintenance,and function of certain tissues.Taurine may be especially important for the retina.The concentration of taurine in the retina is higher than that in any other tissue in the body and taurine deficiency causes retinal oxidative stress,apoptosis,and degeneration of photoreceptors and retinal ganglion cells.Low plasma taurine levels may also underlie retinal degeneration in humans and therefore,taurine administration could exert retinal neuroprotective effects.Taurine has antioxidant,anti-apoptotic,immunomodulatory,and calcium homeostasis-regulatory properties.This review summarizes the role of taurine in retinal health and disease,where it appears that taurine may be a promising nutraceutical.
基金Supported by the National Natural Science Foundation of China(No.82301249,No.82371086)the Science and Technology Projects in Guangzhou(No.SL2024A04J01756)the Fundamental Research Funds of the State Key Laboratory of Ophthalmology(No.83000-32030003).
文摘AIM:To explore the usage of choroidal thickness measured by swept-source optical coherence tomography(SS-OCT)to detect myopic macular degeneration(MMD)in high myopic participants.METHODS:Participants with bilateral high myopia(≤−6 diopters)were recruited from a subset of the Guangzhou Zhongshan Ophthalmic Center-Brien Holden Vision Institute High Myopia Cohort Study.SS-OCT was performed to determine the choroidal thickness,and myopic maculopathy was graded by the International Meta-Analysis for Pathologic Myopia(META-PM)Classification.Presence of MMD was defined as META-PM category 2 or above.RESULTS:A total of 568 right eyes were included for analysis.Eyes with MMD(n=106,18.7%)were found to have older age,longer axial lengths(AL),higher myopic spherical equivalents(SE),and reduced choroidal thickness in each Early Treatment Diabetic Retinopathy Study(ETDRS)grid sector(P<0.001).The area under the receiver operating characteristic(ROC)curves(AUC)for subfoveal choroidal thickness(0.907)was greater than that of the model,including age,AL,and SE at 0.6249,0.8208,and 0.8205,respectively.The choroidal thickness of the inner and outer nasal sectors was the most accurate indicator of MMD(AUC of 0.928 and 0.923,respectively).An outer nasal sector choroidal thickness of less than 74μm demonstrated the highest odds of predicting MMD(OR=33.8).CONCLUSION:Choroidal thickness detects the presence of MMD with high agreement,particularly of the inner and outer nasal sectors of the posterior pole,which appears to be a biometric parameter more precise than age,AL,or SE.
基金supported by the National Natural Science Foundation of China,No.32371048(to YK)the Peking University People’s Hospital Research and Development Funds,No.RDX2021-01(to YK)the Natural Science Foundation of Beijing,No.7222198(to NH)。
文摘Macrophages play an important role in peripheral nerve regeneration,but the specific mechanism of regeneration is still unclear.Our preliminary findings indicated that neutrophil peptide 1 is an innate immune peptide closely involved in peripheral nerve regeneration.However,the mechanism by which neutrophil peptide 1 enhances nerve regeneration remains unclear.This study was designed to investigate the relationship between neutrophil peptide 1 and macrophages in vivo and in vitro in peripheral nerve crush injury.The functions of RAW 264.7 cells we re elucidated by Cell Counting Kit-8 assay,flow cytometry,migration assays,phagocytosis assays,immunohistochemistry and enzyme-linked immunosorbent assay.Axonal debris phagocytosis was observed using the CUBIC(Clear,Unobstructed Brain/Body Imaging Cocktails and Computational analysis)optical clearing technique during Wallerian degeneration.Macrophage inflammatory factor expression in different polarization states was detected using a protein chip.The results showed that neutrophil peptide 1 promoted the prolife ration,migration and phagocytosis of macrophages,and CD206 expression on the surfa ce of macrophages,indicating M2 polarization.The axonal debris clearance rate during Wallerian degeneration was enhanced after neutrophil peptide 1 intervention.Neutrophil peptide 1 also downregulated inflammatory factors interleukin-1α,-6,-12,and tumor necrosis factor-αin invo and in vitro.Thus,the results suggest that neutrophil peptide 1 activates macrophages and accelerates Wallerian degeneration,which may be one mechanism by which neutrophil peptide 1 enhances peripheral nerve regeneration.
基金supported by the National Natural Science Foundation of China,Nos.31 730030 (to XL),81941011 (to XL),31 771053 (to HD),82271403 (to XL),82272171 (to ZY),31971279 (to ZY)82201542 (to FH)+1 种基金the Natural Science Foundation of Beijing,No.7222004 (to HD)the Science and Technology Program of Beijing,No.Z181100001818007(to ZY)
文摘Stroke can cause Wallerian degeneration in regions outside of the brain,particularly in the corticospinal tract.To investigate the fate of major glial cells and axons within affected areas of the corticospinal tract following stroke,we induced photochemical infarction of the sensorimotor cortex leading to Wallerian degeneration along the full extent of the corticospinal tract.We first used a routine,sensitive marker of axonal injury,amyloid precursor protein,to examine Wallerian degeneration of the corticospinal tract.An antibody to amyloid precursor protein mapped exclusively to proximal axonal segments within the ischemic cortex,with no positive signal in distal parts of the corticospinal tract,at all time points.To improve visualization of Wallerian degeneration,we next utilized an orthograde virus that expresses green fluorescent protein to label the corticospinal tract and then quantitatively evaluated green fluorescent protein-expressing axons.Using this approach,we found that axonal degeneration began on day 3 post-stroke and was almost complete by 7 days after stroke.In addition,microglia mobilized and activated early,from day 7 after stroke,but did not maintain a phagocytic state over time.Meanwhile,astrocytes showed relatively delayed mobilization and a moderate response to Wallerian degeneration.Moreover,no anterograde degeneration of spinal anterior horn cells was observed in response to Wallerian degeneration of the corticospinal tract.In conclusion,our data provide evidence for dynamic,pathogenic spatiotemporal changes in major cellular components of the corticospinal tract during Wallerian degeneration.
基金Supported by the Project of Sichuan Medical Association (No.S22058)National Key R&D Project (No.2018YFC1106103).
文摘Retinal degenerative diseases were a large group of diseases characterized by the primary death of retinal ganglion cells(RGCs).Recent studies had shown an interaction between autophagy and nucleotide-binding oligomerization domain-like receptor 3(NLRP3)inflammasomes,which may affect RGCs in retinal degenerative diseases.The NLRP3 inflammasome was a protein complex that,upon activation,produces caspase-1,mediating the apoptosis of retinal cells and promoting the occurrence and development of retinal degenerative diseases.Upregulated autophagy could inhibit NLRP3 inflammasome activation,while inhibited autophagy can promote NLRP3 inflammasome activation,which leaded to the accelerated emergence of drusen and lipofuscin deposition under the neurosensory retina.The activated NLRP3 inflammasome could further inhibit autophagy,thus forming a vicious cycle that accelerated the damage and death of RGCs.This review discussed the relationship between NLRP3 inflammasome and autophagy and its effects on RGCs in age-related macular degeneration,providing a new perspective and direction for the treatment of retinal diseases.
基金sponsored by a grant from the National Institute of Neurological Disorders and Stroke:RO1NS116059(to MZ)。
文摘Modern neuroscience began from all reaching and fierce conflict between“neuronismo and reticulismo”——between neuronal and reticular theories of the organization of the nervous system;the conflict culminated in December of 1906 in Stockholm where Santiago Ramon y Cajal(the proponent of the neuronal doctrine)and Camillo Golgi(who advocated the syncytial reticular organization of neural networks)delivered their Noble prize lectures(Verkhratsky,2009).
基金Shenzhen Fund for Guangdong Provincial High-Level Clinical Key Specialties(SZGSP014)Sanming Project of Medicine in Shenzhen(SZSM202311012)Shenzhen Science and Technology Planning Project(KCXFZ20211020163813019).
文摘Age-related macular degeneration(AMD)ranks third among the most common causes of blindness.As the most conventional and direct method for identifying AMD,color fundus photography has become prominent owing to its consistency,ease of use,and good quality in extensive clinical practice.In this study,a convolutional neural network(CSPDarknet53)was combined with a transformer to construct a new hybrid model,HCSP-Net.This hybrid model was employed to tri-classify color fundus photography into the normal macula(NM),dry macular degeneration(DMD),and wet macular degeneration(WMD)based on clinical classification manifestations,thus identifying and resolving AMD as early as possible with color fundus photography.To further enhance the performance of this model,grouped convolution was introduced in this study without significantly increasing the number of parameters.HCSP-Net was validated using an independent test set.The average precision of HCSPNet in the diagnosis of AMD was 99.2%,the recall rate was 98.2%,the F1-Score was 98.7%,the PPV(positive predictive value)was 99.2%,and the NPV(negative predictive value)was 99.6%.Moreover,a knowledge distillation approach was also adopted to develop a lightweight student network(SCSP-Net).The experimental results revealed a noteworthy enhancement in the accuracy of SCSP-Net,rising from 94%to 97%,while remarkably reducing the parameter count to a quarter of HCSP-Net.This attribute positions SCSP-Net as a highly suitable candidate for the deployment of resource-constrained devices,which may provide ophthalmologists with an efficient tool for diagnosing AMD.
文摘Microglia,originating from primitive macrophages in the yolk sac,serves as both immune system defenders and regulators of homeostasis.These cells exhibit two primary polarization states:conventionally activated(M1)and alternatively activated(M2).The polarization of microglia plays a crucial role in influencing inflammatory disorders,metabolic imbalances,and neural degeneration.This process is implicated in various aspects of ocular diseases,especially age-related macular degeneration(AMD),including inflammation,oxidative stress and pathological angiogenesis.The distinct functional phenotypes of microglia impact disease progression and prognosis.Thus,regulating the polarization or functional phenotype of microglia at different stages of AMD holds promise for personalized therapeutic approaches.This comprehensive review outlines the involvement of microglia polarization in both physiological and pathological conditions,emphasizing its relevance in AMD.The discussion underscores the potential of polarization as a foundation for personalized treatment strategies for AMD.
基金supported by the Ministry of Science and Innovation of Spain,"Instituto de Salud CarlosⅢ","Fon do de Investigacion Sanitaria" (PI19/00265)funds FEDER"Una manera de hacer Europa" (to BM)。
文摘Age-related macular degeneration,a multifactorial inflammatory degenerative retinal disease,ranks as the leading cause of blindness in the elderly.Strikingly,there is a scarcity of curative therapies,especially for the atrophic advanced form of age-related macular degeneration,likely due to the lack of models able to fully recapitulate the native structure of the outer blood retinal barrier,the prime to rget tissue of age-related macular degeneration.Standard in vitro systems rely on 2D monocultures unable to adequately reproduce the structure and function of the outer blood retinal barrier,integrated by the dynamic interaction of the retinal pigment epithelium,the Bruch's membrane,and the underlying choriocapillaris.The Bruch's membrane provides structu ral and mechanical support and regulates the molecular trafficking in the outer blood retinal barrier,and therefo re adequate Bruch's membrane-mimics are key for the development of physiologically relevant models of the outer blood retinal barrie r.In the last years,advances in the field of biomaterial engineering have provided novel approaches to mimic the Bruch's membrane from a variety of materials.This review provides a discussion of the integrated properties and function of outer blood retinal barrier components in healt hy and age-related macular degeneration status to understand the requirements to adequately fabricate Bruch's membrane biomimetic systems.Then,we discuss novel materials and techniques to fabricate Bruch's membrane-like scaffolds for age-related macular degeneration in vitro modeling,discussing their advantages and challenges with a special focus on the potential of Bruch's membrane-like mimics based on decellularized tissue.
基金the National Natural Science Foundation of China(Grant Nos.81970821 and 82271100 to Q.L.).
文摘The retinal pigment epithelium(RPE)is fundamental to sustaining retinal homeostasis.RPE abnormality leads to visual defects and blindness,including age-related macular degeneration(AMD).Although breakthroughs have been made in the treatment of neovascular AMD,effective intervention for atrophic AMD is largely absent.The adequate knowledge of RPE pathology is hindered by a lack of the patients'RPE datasets,especially at the single-cell resolution.In the current study,we delved into a large-scale single-cell resource of AMD donors,in which RPE cells were occupied in a substantial proportion.Bulk RNA-seq datasets of atrophic AMD were integrated to extract molecular characteristics of RPE in the pathogenesis of atrophic AMD.Both in vivo and in vitro models revealed that carboxypeptidase X,M14 family member 2(CPXM2),was specifically expressed in the RPE cells of atrophic AMD,which might be induced by oxidative stress and involved in the epithelial-mesenchymal transition of RPE cells.Additionally,silencing of CPXM2 inhibited the mesenchymal phenotype of RPE cells in an oxidative stress cell model.Thus,our results demonstrated that CPXM2 played a crucial role in regulating atrophic AMD and might serve as a potential therapeutic target for atrophic AMD.
基金Supported by Capital Medical University Scientific Research Grant for Undergraduate Students(No.XSKY2023026).
文摘Age-related macular degeneration(AMD)is a complicated disease that causes irreversible visual impairment.Increasing evidences pointed retinal pigment epithelia(RPE)cells as the decisive cell involved in the progress of AMD,and the function of anti-oxidant capacity of PRE plays a fundamental physiological role.Nuclear factor erythroid 2 related factor 2(Nrf2)is a significant transcription factor in the cellular anti-oxidant system as it regulates the expression of multiple anti-oxidative genes.Its functions of protecting RPE cells against oxidative stress(OS)and ensuing physiological changes,including inflammation,mitochondrial damage and autophagy dysregulation,have already been elucidated.Understanding the roles of upstream regulators of Nrf2 could provide further insight to the OS-mediated AMD pathogenesis.For the first time,this review summarized the reported upstream regulators of Nrf2 in AMD pathogenesis,including proteins and miRNAs,and their underlying molecular mechanisms,which may help to find potential targets via regulating the Nrf2 pathway in the future research and further discuss the existing Nrf2 regulators proved to be beneficial in preventing AMD.
基金the Longyan First Affiliated Hospital of Fujian Medical University(approval No.202014).
文摘BACKGROUND Anti-vascular endothelial growth factor(anti-VEGF)therapy is critical for managing neovascular age-related macular degeneration(nAMD),but understanding factors influencing treatment efficacy is essential for optimizing patient outcomes.AIM To identify the risk factors affecting anti-VEGF treatment efficacy in nAMD and develop a predictive model for short-term response.METHODS In this study,65 eyes of exudative AMD patients after anti-VEGF treatment for≥1 mo were observed using optical coherence tomography angiography.Patients were classified into non-responders(n=22)and responders(n=43).Logistic regression was used to determine independent risk factors for treatment response.A predictive model was created using the Akaike Information Criterion,and its performance was assessed with the area under the receiver operating characteristic curve,calibration curves,and decision curve analysis(DCA)with 500 bootstrap re-samples.RESULTS Multivariable logistic regression analysis identified the number of junction voxels[odds ratio=0.997,95%confidence interval(CI):0.993-0.999,P=0.010]as an independent predictor of positive anti-VEGF treatment outcomes.The predictive model incorporating the fractal dimension,number of junction voxels,and longest shortest path,achieved an area under the curve of 0.753(95%CI:0.622-0.873).Calibration curves confirmed a high agreement between predicted and actual outcomes,and DCA validated the model's clinical utility.CONCLUSION The predictive model effectively forecasts 1-mo therapeutic outcomes for nAMD patients undergoing anti-VEGF therapy,enhancing personalized treatment planning.
基金Supported by Shenzhen Science and Technology Program,Shenzhen,China(No.JCYJ20200109145001814,No.SGDX20211123120001001)the National Natural Science Foundation of China(No.81970790)Sanming Project of Medicine in Shenzhen(No.SZSM202011015).
文摘AIM:To describe the clinical,electrophysiological,and genetic features of an unusual case with an RDH12 homozygous pathogenic variant and reviewed the characteristics of the patients reported with the same variant.METHODS:The patient underwent a complete ophthalmologic examination including best-corrected visual acuity,anterior segment and dilated fundus,visual field,spectral-domain optical coherence tomography(OCT)and electroretinogram(ERG).The retinal disease panel genes were sequenced through chip capture high-throughput sequencing and Sanger sequencing was used to confirm the result.Then we reviewed the characteristics of the patients reported with the same variant.RESULTS:A 30-year male presented with severe early retinal degeneration who complained night blindness,decreased visual acuity,vitreous floaters and amaurosis fugax.The best corrected vision was 0.04 OD and 0.12 OS,respectively.The fundus photo and OCT showed bilateral macular atrophy but larger areas of macular atrophy in the left eye.Autofluorescence shows bilateral symmetrical hypo-autofluorescence.ERG revealed that the amplitudes of a-and b-wave were severely decreased.Multifocal ERG showed decreased amplitudes in the local macular area.A homozygous missense variant c.146C>T(chr14:68191267)was found.The clinical characteristics of a total of 13 patients reported with the same pathologic variant varied.CONCLUSION:An unusual patient with a homozygous pathogenic variant in the c.146C>T of RDH12 which causes late-onset and asymmetric retinal degeneration are reported.The clinical manifestations of the patient with multimodal retinal imaging and functional examinations have enriched our understanding of this disease.