The degradation data of multi-components in missile is derived by periodical testing. How to use these data to assess the storage reliability (SR) of the whole missile is a difficult problem in current research. An SR...The degradation data of multi-components in missile is derived by periodical testing. How to use these data to assess the storage reliability (SR) of the whole missile is a difficult problem in current research. An SR assessment model based on competition failure of multi-components in missile is proposed. By analyzing the missile life profile and its storage failure feature, the key components in missile are obtained and the characteristics voltage is assumed to be its key performance parameter. When the voltage testing data of key components in missile are available, a state space model (SSM) is applied to obtain the whole missile degradation state, which is defined as the missile degradation degree (DD). A Wiener process with the time-scale model (TSM) is applied to build the degradation failure model with individual variability and nonlinearity. The Weibull distribution and proportional risk model are applied to build an outburst failure model with performance degradation effect. Furthermore, a competition failure model with the correlation between degradation failure and outburst failure is proposed. A numerical example with a set of missiles in storage is analyzed to demonstrate the accuracy and superiority of the proposed model.展开更多
Short-chain chlorinated paraffins(SCCPs) are still controversial candidates for inclusion in the Stockholm Convention.The inherent mixture nature of SCCPs makes it rather difficult to explore their environmental beh...Short-chain chlorinated paraffins(SCCPs) are still controversial candidates for inclusion in the Stockholm Convention.The inherent mixture nature of SCCPs makes it rather difficult to explore their environmental behaviors.A virtual molecule library of 42,720 C10-SCCP congeners covering the full structure spectrum was constructed.We explored the structural effects on the thermodynamic parameters and environmental degradability of C10-SCCPs through semi-empirical quantum chemical calculations.The thermodynamic properties were acquired using the AM1 method,and frontier molecular orbital analysis was carried out to obtain the EHOMO,ELUMO and ELUMO-EHOMO for degradability exploration at the same level.The influence of the chlorination degree(NCl on the relative stability and environmental degradation was elucidated.A novel structural descriptor,μ,was proposed to measure the dispersion of the chlorine atoms within a molecule.There were significant correlations between thermodynamic values and NCl,while the reported NCl-dependent pollution profile of C10-SCCPs in environmental samples was basically consistent with the predicted order of formation stability of C10-SCCP congeners.In addition,isomers with largeμ showed higher relative stability than those with small μ.This could be further verified by the relationship between μ and the reactivity of nucleophilic substitution and · OH attack respectively.The C10-SCCP congeners with less Cl substitution and lower dispersion degree are susceptible to environmental degradation via nucleophilic substitution and hydroxyl radical attack,while direct photolysis of C10-SCCP congeners cannot readily occur due to the large ELUMO-EHOMO values.The chlorination effect and the conclusions were further checked with appropriate density functional theory(DFT) calculations.展开更多
基金supported by the National Defense Foundation of China(71601183)
文摘The degradation data of multi-components in missile is derived by periodical testing. How to use these data to assess the storage reliability (SR) of the whole missile is a difficult problem in current research. An SR assessment model based on competition failure of multi-components in missile is proposed. By analyzing the missile life profile and its storage failure feature, the key components in missile are obtained and the characteristics voltage is assumed to be its key performance parameter. When the voltage testing data of key components in missile are available, a state space model (SSM) is applied to obtain the whole missile degradation state, which is defined as the missile degradation degree (DD). A Wiener process with the time-scale model (TSM) is applied to build the degradation failure model with individual variability and nonlinearity. The Weibull distribution and proportional risk model are applied to build an outburst failure model with performance degradation effect. Furthermore, a competition failure model with the correlation between degradation failure and outburst failure is proposed. A numerical example with a set of missiles in storage is analyzed to demonstrate the accuracy and superiority of the proposed model.
基金jointly supported by the Chinese Academy of Sciences (Nos. KZCX2-YW-BR-25, XDB14030500 and YSW2013B01)the National High Technology Research and Development Program (863) of China (No. 2013AA065201)
文摘Short-chain chlorinated paraffins(SCCPs) are still controversial candidates for inclusion in the Stockholm Convention.The inherent mixture nature of SCCPs makes it rather difficult to explore their environmental behaviors.A virtual molecule library of 42,720 C10-SCCP congeners covering the full structure spectrum was constructed.We explored the structural effects on the thermodynamic parameters and environmental degradability of C10-SCCPs through semi-empirical quantum chemical calculations.The thermodynamic properties were acquired using the AM1 method,and frontier molecular orbital analysis was carried out to obtain the EHOMO,ELUMO and ELUMO-EHOMO for degradability exploration at the same level.The influence of the chlorination degree(NCl on the relative stability and environmental degradation was elucidated.A novel structural descriptor,μ,was proposed to measure the dispersion of the chlorine atoms within a molecule.There were significant correlations between thermodynamic values and NCl,while the reported NCl-dependent pollution profile of C10-SCCPs in environmental samples was basically consistent with the predicted order of formation stability of C10-SCCP congeners.In addition,isomers with largeμ showed higher relative stability than those with small μ.This could be further verified by the relationship between μ and the reactivity of nucleophilic substitution and · OH attack respectively.The C10-SCCP congeners with less Cl substitution and lower dispersion degree are susceptible to environmental degradation via nucleophilic substitution and hydroxyl radical attack,while direct photolysis of C10-SCCP congeners cannot readily occur due to the large ELUMO-EHOMO values.The chlorination effect and the conclusions were further checked with appropriate density functional theory(DFT) calculations.