As a key transmission component in computer numerical control(CNC) machine tools,the ball screw mechanism(BSM) is usually investigated under working load conditions. Its accuracy degradation process is relatively long...As a key transmission component in computer numerical control(CNC) machine tools,the ball screw mechanism(BSM) is usually investigated under working load conditions. Its accuracy degradation process is relatively long,which is not conducive to the design and development of new products. In this paper,the normal wear depth of the BSM nut raceway is calculated under the variable speed operation condition using the fractal wear analysis method and the BSM’s accelerated degradation proportional wear model. Parameters of the acceleration degradation model of the double-nut preloaded ball screw pair are calculated based on the physical simulation results. The accelerated degradation test platform of the BSM is designed and manufactured to calculate the raceway wear model when the lubrication condition is broken under the variable-speed inertial load and the boundary lubrication condition under the uniform speed state. Three load forces and two samples are selected for the accelerated degradation test of the BSM. The measured friction torque of the BSM is employed as the evaluation index of the accuracy degradation test. In addition,the life cycle of the accuracy retention is accurately calculated by employing the parameters of the physical simulation model of the BSM. The calculations mentioned above can be used to estimate BSM’s accuracy performance degradation law under normal operating conditions. The application of the proposed model provides a new research method for researching the precision retention of the BSM.展开更多
Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degrad...Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item's individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction.展开更多
A caisson breakwater is built on soft foundations after replacing the upper soft layer with sand. This paper presents a dynamic finite element method to investigate the strength degradation and associated pore pressur...A caisson breakwater is built on soft foundations after replacing the upper soft layer with sand. This paper presents a dynamic finite element method to investigate the strength degradation and associated pore pressure development of the intercalated soft layer under wave cyclic loading. By combining the undrained shear strength with the empirical formula of overconsolidation clay produced by unloading and the development model of pore pressure, the dynamic degradation law that describes the undrained shear strength as a function of cycle number and stress level is derived. Based on the proposed dynamic degradation law and M-C yield criterion, a dynamic finite element method is numerically implemented to predict changes in undrained shear strength of the intercalated soft layer by using the general-purpose FEM software ABAQUS, and the accuracy of the method is verified. The effects of cycle number and amplitude of the wave force on the degradation of the undrained shear strength of the intercalated soft layer and the associated excess pore pressure response are investigated by analyzing an overall distribution and three typical sections underneath the breakwater. By comparing the undrained shear strength distributions obtained by the static method and the quasi-static method with the undrained shear strength distributions obtained by the dynamic finite element method in the three typical sections, the superiority of the dynamic finite element method in predicting changes in undrained shear strength is demonstrated.展开更多
Ti/SnO2–Sb electrode has a good effect on the removal of organic pollutants. But its short service life limits its large-scale application in industry. Electro-catalytic degradation performances and service life of t...Ti/SnO2–Sb electrode has a good effect on the removal of organic pollutants. But its short service life limits its large-scale application in industry. Electro-catalytic degradation performances and service life of the electrode can be significantly improved by doping rare earth(RE) ions into the oxide coating of Ti/SnO2–Sb electrode. Ti/SnO2–Sb electrodes doped with different RE elements(Ce, Dy, La, and Eu) were prepared by the thermal decomposition method at 550 ℃. Electro-catalytic degradation performances of electrodes doped with different RE elements were evaluated by linear sweep voltammetry(LSV) and Tafel curves. During the electrolysis,the conversion of p-nitrophenol was performed with these electrodes as anodes under galvanostatic control. The structures and morphologies of the surface coating of the electrodes were characterized by scanning electron microscope(SEM). The results demonstrate that the electro-catalytic degradation performances of Ti/SnO2–Sb electrodes are improved to different levels by doping different RE ions. Improved Ti/SnO2–Sb electrodes by the introduction of different RE have higher oxygen evolution potential, better electro-catalysis ability, better coverage,and longer electrode life.展开更多
Six guanidinium salts of arylarsenic po1ytungstates have been prepared by the 'degradation method' using sodium metatungstate as a starting material instead of sodium tungstate, They belong to three types of c...Six guanidinium salts of arylarsenic po1ytungstates have been prepared by the 'degradation method' using sodium metatungstate as a starting material instead of sodium tungstate, They belong to three types of complexes: [(RAs)_2W_6O_(25)H]^(5-) where R=C_6H_5(1),o-NO_2C_6H_4(2),m-NO_2C_6H_4(3), p-NO_2C_6H_4(4),[(RAs)_2W_6O_(25)]^(4-) where R=p-NH_2C_6H_4(5), and[(RAs)_2W_6O(25)]^(6-)where R=3,4,-C_6H_3 (NO_2)(OH)(6). Complex 1 is a known compound, prepared by the acidification building up method, i.e. conversion of sodium tungstate to polytungstate. Complex 1 and 6 prepared by the degradation method, i.e. from sodium metatungstate to lower polytungstate, are briefly reported in our previous re- port of this investigation. Complexes 2-5 are new compounds. Molecular structures of complexes 5 and 6 have been determined by means of single-crystal X-ray diffraction studies. It is especially em- phasized that the degradation method starting with metatungstate has the advantage in the simplification of reaction products. thus leading to their higher yields.展开更多
Carbon nanotube (CNTs)/Fe-Ni/TiO2 nanocomposite photocatalysts have been synthesized by an in situ fluidized bed chemical vapor deposition (FBCVD) method. The composite photocatalysts were characterized by XRD, Ra...Carbon nanotube (CNTs)/Fe-Ni/TiO2 nanocomposite photocatalysts have been synthesized by an in situ fluidized bed chemical vapor deposition (FBCVD) method. The composite photocatalysts were characterized by XRD, Raman spectroscopy, BET, FESEM, TEM, UV-vis spectroscopy, and XPS. The results showed that the CNTs were grown in situ on the surface of TiO2. Fe(Ⅲ) in TiO2 showed no chemical changes in the growth of CNTs. Ni(Ⅱ) was partly reduced to metal Ni in the FBCVD process, and the metal Ni acted as a catalyst for the growth of CNTs. The photocatalytic activities of CNTs/Fe-Ni/TiO2 decreased with the rise of the FBCVD reaction temperature. For the sample synthesized at low FBCVD temperature (500 ℃), more than 90% and nearly 50% of methylene blue were removed under UV irradiation in 180 min and under visible light irradiation in 300 min, respectively. The probable mechanism of synergistic enhancement of photocatalysis on the CNTs/Fe-Ni/TiO2 nanocomposite is proposed.展开更多
基金Supported by the National Natural Science Foundation of China(No.51575014,51505020)the Key Foundation Project of China Academy of Railway Sciences(No.2021YJ200).
文摘As a key transmission component in computer numerical control(CNC) machine tools,the ball screw mechanism(BSM) is usually investigated under working load conditions. Its accuracy degradation process is relatively long,which is not conducive to the design and development of new products. In this paper,the normal wear depth of the BSM nut raceway is calculated under the variable speed operation condition using the fractal wear analysis method and the BSM’s accelerated degradation proportional wear model. Parameters of the acceleration degradation model of the double-nut preloaded ball screw pair are calculated based on the physical simulation results. The accelerated degradation test platform of the BSM is designed and manufactured to calculate the raceway wear model when the lubrication condition is broken under the variable-speed inertial load and the boundary lubrication condition under the uniform speed state. Three load forces and two samples are selected for the accelerated degradation test of the BSM. The measured friction torque of the BSM is employed as the evaluation index of the accuracy degradation test. In addition,the life cycle of the accuracy retention is accurately calculated by employing the parameters of the physical simulation model of the BSM. The calculations mentioned above can be used to estimate BSM’s accuracy performance degradation law under normal operating conditions. The application of the proposed model provides a new research method for researching the precision retention of the BSM.
基金Projects(51475462,61374138,61370031)supported by the National Natural Science Foundation of China
文摘Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item's individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction.
基金financially supported by the National Natural Science Foundation of China(Grant No.51279128)the National Natural Science Fund for Innovative Research Groups Science Foundation(Grant No.51321065)the Construction Science and Technology Project of Ministry of Transport of the People’s Republic of China(Grant No.2013328224070)
文摘A caisson breakwater is built on soft foundations after replacing the upper soft layer with sand. This paper presents a dynamic finite element method to investigate the strength degradation and associated pore pressure development of the intercalated soft layer under wave cyclic loading. By combining the undrained shear strength with the empirical formula of overconsolidation clay produced by unloading and the development model of pore pressure, the dynamic degradation law that describes the undrained shear strength as a function of cycle number and stress level is derived. Based on the proposed dynamic degradation law and M-C yield criterion, a dynamic finite element method is numerically implemented to predict changes in undrained shear strength of the intercalated soft layer by using the general-purpose FEM software ABAQUS, and the accuracy of the method is verified. The effects of cycle number and amplitude of the wave force on the degradation of the undrained shear strength of the intercalated soft layer and the associated excess pore pressure response are investigated by analyzing an overall distribution and three typical sections underneath the breakwater. By comparing the undrained shear strength distributions obtained by the static method and the quasi-static method with the undrained shear strength distributions obtained by the dynamic finite element method in the three typical sections, the superiority of the dynamic finite element method in predicting changes in undrained shear strength is demonstrated.
基金financially supported by the National Natural Science Foundation of China (No. 51364024 and 51404124)Gansu Province Department of Education Fund (No. 2013A-029)the Foundation of State Key Laboratory of Gansu Advanced Nonferrous Metal Materials (Nos. SKL 1316 and SKL 1314)
文摘Ti/SnO2–Sb electrode has a good effect on the removal of organic pollutants. But its short service life limits its large-scale application in industry. Electro-catalytic degradation performances and service life of the electrode can be significantly improved by doping rare earth(RE) ions into the oxide coating of Ti/SnO2–Sb electrode. Ti/SnO2–Sb electrodes doped with different RE elements(Ce, Dy, La, and Eu) were prepared by the thermal decomposition method at 550 ℃. Electro-catalytic degradation performances of electrodes doped with different RE elements were evaluated by linear sweep voltammetry(LSV) and Tafel curves. During the electrolysis,the conversion of p-nitrophenol was performed with these electrodes as anodes under galvanostatic control. The structures and morphologies of the surface coating of the electrodes were characterized by scanning electron microscope(SEM). The results demonstrate that the electro-catalytic degradation performances of Ti/SnO2–Sb electrodes are improved to different levels by doping different RE ions. Improved Ti/SnO2–Sb electrodes by the introduction of different RE have higher oxygen evolution potential, better electro-catalysis ability, better coverage,and longer electrode life.
文摘Six guanidinium salts of arylarsenic po1ytungstates have been prepared by the 'degradation method' using sodium metatungstate as a starting material instead of sodium tungstate, They belong to three types of complexes: [(RAs)_2W_6O_(25)H]^(5-) where R=C_6H_5(1),o-NO_2C_6H_4(2),m-NO_2C_6H_4(3), p-NO_2C_6H_4(4),[(RAs)_2W_6O_(25)]^(4-) where R=p-NH_2C_6H_4(5), and[(RAs)_2W_6O(25)]^(6-)where R=3,4,-C_6H_3 (NO_2)(OH)(6). Complex 1 is a known compound, prepared by the acidification building up method, i.e. conversion of sodium tungstate to polytungstate. Complex 1 and 6 prepared by the degradation method, i.e. from sodium metatungstate to lower polytungstate, are briefly reported in our previous re- port of this investigation. Complexes 2-5 are new compounds. Molecular structures of complexes 5 and 6 have been determined by means of single-crystal X-ray diffraction studies. It is especially em- phasized that the degradation method starting with metatungstate has the advantage in the simplification of reaction products. thus leading to their higher yields.
基金supported by the Special Projects for Nanotechnology of Shanghai(1052mm02400)the National Nature Science Foundation of China(20925621)
文摘Carbon nanotube (CNTs)/Fe-Ni/TiO2 nanocomposite photocatalysts have been synthesized by an in situ fluidized bed chemical vapor deposition (FBCVD) method. The composite photocatalysts were characterized by XRD, Raman spectroscopy, BET, FESEM, TEM, UV-vis spectroscopy, and XPS. The results showed that the CNTs were grown in situ on the surface of TiO2. Fe(Ⅲ) in TiO2 showed no chemical changes in the growth of CNTs. Ni(Ⅱ) was partly reduced to metal Ni in the FBCVD process, and the metal Ni acted as a catalyst for the growth of CNTs. The photocatalytic activities of CNTs/Fe-Ni/TiO2 decreased with the rise of the FBCVD reaction temperature. For the sample synthesized at low FBCVD temperature (500 ℃), more than 90% and nearly 50% of methylene blue were removed under UV irradiation in 180 min and under visible light irradiation in 300 min, respectively. The probable mechanism of synergistic enhancement of photocatalysis on the CNTs/Fe-Ni/TiO2 nanocomposite is proposed.