期刊文献+
共找到3,399篇文章
< 1 2 170 >
每页显示 20 50 100
On-Resistance Degradations Under Different Stress Conditions in High Voltage pLEDMOS Transistors and an Improved Method 被引量:3
1
作者 孙伟锋 吴虹 +2 位作者 时龙兴 易扬波 李海松 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第2期214-218,共5页
The on-resistance degradations of the p-type lateral extended drain MOS transistor (pLEDMOS) with thick gate oxide under different hot carrier stress conditions are different, which has been experimentally investiga... The on-resistance degradations of the p-type lateral extended drain MOS transistor (pLEDMOS) with thick gate oxide under different hot carrier stress conditions are different, which has been experimentally investigated. This difference results from the interface trap generation and the hot electron injection, and trapping into the thick gate oxide and field oxide of the pLEDMOS transistor. An improved method to reduce the on-resistance degradations is also presented, which uses the field oxide as the gate oxide instead of the thick gate oxide. The effects are analyzed with a MEDICI simulator. 展开更多
关键词 pLEDMOS on-resistance degradation hot electron injection and trapping thick gate oxide
下载PDF
Microplastic degradations in simulated UV light,natural light and natural water body:A comparison investigation
2
作者 Bocheng Chen Beibei He +1 位作者 Hao Wu An Liu 《Emerging Contaminants》 2024年第3期68-76,共9页
Microplastics(MPs)degradation due to light radiation,weathering,water erosion and biodegradation might change MPs physical and chemical characteristics and thereby change MPs behaviors in natural environments.This stu... Microplastics(MPs)degradation due to light radiation,weathering,water erosion and biodegradation might change MPs physical and chemical characteristics and thereby change MPs behaviors in natural environments.This study conducted a comparison investigation on polyvinyl chloride(PVC),polyethylene(PE)and polyamide(PA)degradation in three different environmental conditions,namely simulated UV light,natural light and natural water body.The results showed that degradation of MPs in natural environments is more complex than the case in a controlled experimental condition(such as simulated UV light).In the conditions of natural light and natural water body,MPs are more easily covered by sediments/microorganisms.Particularly in the natural water body,biofilm development is an important factor for MPs degradation and this is dependent on where MPs are located.PVC in the water surface adsorbed more prokaryotes and eukaryotes than those in the water bottom while PE and PA showed the opposite.The research outcomes also show that a complex interaction between MPs and heavy metals in different environments.In simulated UV light,heavy metals tended to leach from MPs while in the natural light and natural water body,heavy metal concentrations of MPs had a higher variability caused by continuous leaching-adsorption behaviors.Those outcomes were expected to contribute to an in-depth understanding of MP degradations and their environmental behaviors. 展开更多
关键词 Polyvinyl chloride Polyethylene Polyamide Degradation Microplastics
原文传递
One-step synthesis of three-dimensional mesoporous Co_(3)O_(4)@Al_(2)O_(3)nanocomposites with deep eutectic solvent:An efficient and stable peroxymonosulfate activator for organic pollutant degradations
3
作者 Yuchen Wang Kai Rong +4 位作者 Jiale Wei Shanlei Chang Dengbin Yu Youxing Fang Shaojun Dong 《Nano Research》 SCIE EI CSCD 2023年第8期11430-11443,共14页
The effective,stable,and secure catalysts are essential for sulfate radical(SO_(4)·−)-based advanced oxidation processes(SR-AOPs)to the degradation of organic contaminants in water.Heterogeneous supported cobalt-... The effective,stable,and secure catalysts are essential for sulfate radical(SO_(4)·−)-based advanced oxidation processes(SR-AOPs)to the degradation of organic contaminants in water.Heterogeneous supported cobalt-based catalysts are commonly used to activate peroxymonosulfate(PMS)to achieve the degradation.In this work,we synthesized Co_(3)O_(4)@Al_(2)O_(3)three-dimensional(3D)mesoporous nanocomposite(denoted as Co_(3)O_(4)@Al_(2)O_(33)DPNC)in just one step by calcining cheap and green deep eutectic solvent(DES)solution containing Co salt.Co_(3)O_(4)@Al_(2)O_(33)DPNC with the high specific surface area(93.246 m^(2)/g),uniform pore distribution(3.829 nm)and rich porosity(0.255 cm^(3)/g)were attained in a beautiful hierarchical structure which exhibited the open 3D propeller-like microstructure,two-dimensional lamellar substructure with rich folds,as well as the decoration of highly dispersed Co_(3)O_(4)nanoparticles on mesoporous amorphous Al_(2)O_(3).The excellent chemical and thermal stability of Al_(2)O_(3)ensures the high stability of the catalyst,and the formation of the complex hierarchical structure makes the active Co_(3)O_(4)be homogenously dispersed for effective catalysis.The catalyst demonstrated outstanding performance for catalytic degradations of organic pollutants(acetaminophen,oxytetracycline,5-sulfosalicylic acid,orange G and Rhodamine B)by generated SO_(4)·−,·OH and^(1)O_(2).With a very low cobalt content(equal to 28.2 mg/L of Co),the catalyst exhibited very high stability and excellent reusability in the recycling usages,while the leaching of the cobalt element(<0.145 mg/L)was also at a low level.Our catalyst achieved effective degradations of acetaminophen in cycles without losing its stable hierarchical nanostructure. 展开更多
关键词 PEROXYMONOSULFATE organic pollutant degradation deep eutectic solvent Co_(3)O_(4)@Al_(2)O_(3)nanocomposite hierarchical nanostructure
原文传递
Highly Efficient Aligned Ion‑Conducting Network and Interface Chemistries for Depolarized All‑Solid‑State Lithium Metal Batteries 被引量:2
4
作者 Yongbiao Mu Shixiang Yu +12 位作者 Yuzhu Chen Youqi Chu Buke Wu Qing Zhang Binbin Guo Lingfeng Zou Ruijie Zhang Fenghua Yu Meisheng Han Meng Lin Jinglei Yang Jiaming Bai Lin Zeng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期102-119,共18页
Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact l... Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature. 展开更多
关键词 All-solid-state lithium metal batteries Composite solid electrolyte 3D printing Areal capacity Interfacial degradation
下载PDF
Inhibition of protein degradation increases the Bt protein concentration in Bt cotton 被引量:1
5
作者 Yuting Liu Hanjia Li +6 位作者 Yuan Chen Tambel Leila.I.M Zhenyu Liu Shujuan Wu Siqi Sun Xiang Zhang Dehua Chen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1897-1909,共13页
Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s... Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s organs.Therefore,increasing the Bt protein concentration at the boll stage,especially in bolls,has become the main goal for increasing insect resistance in cotton.In this study,two protein degradation inhibitors(ethylene diamine tetra acetic acid(EDTA)and leupeptin)were sprayed on the bolls,subtending leaves,and whole cotton plants at the peak flowering stage of two Bt cultivars(medium maturation Sikang 1(SK1))and early maturation Zhongmian 425(ZM425)in 2019 and 2020.The Bt protein content and protein degradation metabolism were assessed.The results showed that the Bt protein concentrations were enhanced by 21.3 to 38.8%and 25.0 to 38.6%in the treated bolls of SK1 and ZM425 respectively,while they were decreased in the subtending leaves of these treated bolls.In the treated leaves,the Bt protein concentrations increased by 7.6 to 23.5%and 11.2 to 14.9%in SK1 and ZM425,respectively.The combined application of EDTA and leupeptin to the whole cotton plant increased the Bt protein concentrations in both bolls and subtending leaves.The Bt protein concentrations in bolls were higher,increasing by 22.5 to 31.0%and 19.6 to 32.5%for SK1 and ZM425,respectively.The organs treated with EDTA or/and leupeptin showed reduced free amino acid contents,protease and peptidase activities and significant enhancements in soluble protein contents.These results indicated that inhibiting protein degradation could improve the protein content,thus increasing the Bt protein concentrations in the bolls or/and leaves of cotton plants.Therefore,the increase in the Bt protein concentration without yield reduction suggested that these two protein degradation inhibitors may be applicable for improving insect resistance in cotton production. 展开更多
关键词 Bt cotton Bt protein inhibition of protein degradation protein degradation metabolism
下载PDF
Understanding the oxidation chemistry of Ti_(3)C_(2)T_(x)(MXene)sheets and their catalytic performances 被引量:1
6
作者 Suvdanchimeg Sunderiya Selengesuren Suragtkhuu +9 位作者 Solongo Purevdorj Tumentsereg Ochirkhuyag Munkhjargal Bat-Erdene Purevlkham Myagmarsereejid Ashley DSlattery Abdulaziz SRBati Joseph GShapter Dorj Odkhuu Sarangerel Davaasambuu Munkhbayar Batmunkh 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期437-445,I0010,共10页
Transition metal carbides and nitrides(MXenes)nanosheets are attractive two-dimensional(2D)materials,but they suffer from oxidation/degradation issues during storage and/or applications due to their sensitivity to wat... Transition metal carbides and nitrides(MXenes)nanosheets are attractive two-dimensional(2D)materials,but they suffer from oxidation/degradation issues during storage and/or applications due to their sensitivity to water and oxygen.Despite the great research progress,the exact oxidation kinetics of Ti_(3)C_(2)T_(x)(MXene)and their final products after oxidation are not fully understood.Herein,we systematically tracked the oxidation process of few-layer Ti_(3)C_(2)T_(x) nanosheets in an aqueous solution at room temperature over several weeks.We also studied the oxidation effects on the electrocatalytic properties of Ti_(3)C_(2)T_(x) for hydrogen evolution reaction and found that the overpotential to achieve a current density of 10 mA cm^(-2)increases from 0.435 to 0.877 V after three weeks of degradation,followed by improvement to stabilized values of around 0.40 V after eight weeks.These results suggest that severely oxidized MXene could be a promising candidate for designing efficient catalysts.According to our detailed experimental characterization and theoretical calculations,unlike previous studies,black titanium oxide is formed as the final product in addition to white Ti(IV)oxide and disordered carbons after the complete oxidation of Ti_(3)C_(2)T_(x).This work presents significant advancements in better understanding of 2D Ti_(3)C_(2)T_(x)(MXene)oxidation and enhances the prospects of this material for various applications. 展开更多
关键词 2D materials MXene Chemical degradation CATALYSIS Hydrogen evolution reaction
下载PDF
Achieving high-efficient photocatalytic persulfate-activated degradation of tetracycline via carbon dots modified MIL-101(Fe)octahedrons 被引量:1
7
作者 Hao Yuan Xinhai Sun +2 位作者 Shuai Zhang Weilong Shi Feng Guo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期298-309,共12页
The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)... The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)composite photocatalyst was synthesized for visible light-driven photocatalytic/persulfate(PS)-activated tetracycline(TC)degradation.The electron spin resonance(ESR)spectra,scavenging experiment and electrochemical analysis were carried out to reveal that the high visible light-driven photocatalytic degradation activity of TC over CDs/MIL-101(Fe)photocatalysts is not only ascribed to the production of free active radicals in the CDs/MIL-101(Fe)/PS system(·OH,·SO_(4-),^(1)O_(2),h^(+)and·O_(2)^(-))but also attributed to the consumption of electrons caused by the PS,which can suppress the recombination of photo-generated carriers as well as strong light scattering and electron trapping effects of CDs.Finally,the possible degradation pathways were proposed by analyzing intermediates via liquid chromatography-mass spectrometry technique.This research presents a rational design conception to construct a CDs/PS-based photocatalysis/advanced oxidation technology with high-efficient degradation activity for the remediation of organic antibiotic pollutant wastewater and for the improvement of carrier transport kinetics of photocatalysts. 展开更多
关键词 Carbon dots MIL-101(Fe) PHOTOCATALYTIC Persulfate activation Tetracycline degradation
下载PDF
Enhanced activation of peroxymonosulfate by Fe/N co-doped ordered mesoporous carbon with dual active sites for efficient removal of m-cresol 被引量:1
8
作者 Donghui Li Wenzhe Wu +6 位作者 Xue Ren Xixi Zhao Hongbing Song Meng Xiao Quanhong Zhu Hengjun Gai Tingting Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期130-144,共15页
The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,th... The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,the complexation of N elements in urea could anchor Fe,and the formation of C3N4during urea pyrolysis could also prevent migration and aggregation of Fe species,which jointly improve the dispersion and stability of Fe.The FeN4sites and highly dispersed Fe nanoparticles synergistically trigger the dual-site peroxymonosulfate (PMS) activation for highly efficient m-cresol degradation,while the ordered mesoporous structure of the catalyst could improve the mass transfer rate of the catalytic process,which together promote catalytic degradation of m-cresol by PMS activation.Reactive oxygen species (ROS) analytic experiments demonstrate that the system degrades m-cresol by free radical pathway mainly based on SO_(4)^(-)·and·OH,and partially based on·OH as the active components,and a possible PMS activation mechanism by 5Fe-50 for m-cresol degradation was proposed.This study can provide theoretical guidance for the preparation of efficient and stable catalysts for the degradation of organic pollutants by activated PMS. 展开更多
关键词 Degradation PEROXYMONOSULFATE Fe(II)/Fe(III)/FeN4 Ordered mesopores carbon Catalyst Radical
下载PDF
Predicting the Degradability of Bioceramics through a DFT-based Descriptor
9
作者 CHEN Mengjie WANG Qianqian +1 位作者 WU Chengtie HUANG Jian 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第10期1175-1181,I0007-I0009,共10页
Bioceramics have attracted extensive attention for bone defect repair due to their excellent bioactivity and degradability.However,challenges remain in matching the rate between bioceramic degradation and new bone for... Bioceramics have attracted extensive attention for bone defect repair due to their excellent bioactivity and degradability.However,challenges remain in matching the rate between bioceramic degradation and new bone formation,necessitating a deeper understanding of their degradation properties.In this study,density functional theory(DFT)calculations was employed to explore the structural and electronic characteristics of silicate bioceramics.These findings reveal a linear correlation between the maximum isosurface value of the valence band maximum(VBM_(Fmax))and the degradability of silicate bioceramics.This correlation was subsequently validated through degradation experiments.Furthermore,the investigation on phosphate bioceramics demonstrates the potential of this descriptor in predicting the degradability of a broader range of bioceramics.This discovery offers valuable insights into the degradation mechanism of bioceramics and holds promise for accelerating the design and development of bioceramics with controllable degradation. 展开更多
关键词 BIOCERAMICS SILICATE PHOSPHATE first PRINCIPLES degradation
下载PDF
Discrimination of polysorbate 20 by high-performance liquid chromatography-charged aerosol detection and characterization for components by expanding compound database and library
10
作者 Shi-Qi Wang Xun Zhao +10 位作者 Li-Jun Zhang Yue-Mei Zhao Lei Chen Jin-Lin Zhang Bao-Cheng Wang Sheng Tang Tom Yuan Yaozuo Yuan Mei Zhang Hian Kee Lee Hai-Wei Shi 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第5期722-732,共11页
Analyzing polysorbate 20(PS20)composition and the impact of each component on stability and safety is crucial due to formulation variations and individual tolerance.The similar structures and polarities of PS20 compon... Analyzing polysorbate 20(PS20)composition and the impact of each component on stability and safety is crucial due to formulation variations and individual tolerance.The similar structures and polarities of PS20 components make accurate separation,identification,and quantification challenging.In this work,a high-resolution quantitative method was developed using single-dimensional high-performance liquid chromatography(HPLC)with charged aerosol detection(CAD)to separate 18 key components with multiple esters.The separated components were characterized by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UHPLC-Q-TOF-MS)with an identical gradient as the HPLC-CAD analysis.The polysorbate compound database and library were expanded over 7-time compared to the commercial database.The method investigated differences in PS20 samples from various origins and grades for different dosage forms to evaluate the composition-process relationship.UHPLC-Q-TOF-MS identified 1329 to 1511 compounds in 4 batches of PS20 from different sources.The method observed the impact of 4 degradation conditions on peak components,identifying stable components and their tendencies to change.HPLC-CAD and UHPLC-Q-TOF-MS results provided insights into fingerprint differences,distinguishing quasi products. 展开更多
关键词 Polysorbate 20 Component DATABASE DISCRIMINATION Degradation
下载PDF
Biodegradation of Crystalline Chitin:A Review of Recent Advancement,Challenges,and Future Study Directions
11
作者 SONG Jianlin SU Haipeng +1 位作者 SUN Jianan MAO Xiangzhao 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第5期1319-1328,共10页
Chitin is the second most abundant renewable polysaccharide on Earth.The degradation of chitin into soluble and bioactive N-acetyl chitooligosaccharides(NCOSs)and N-acetyl-D-glucosamine(GlcNAc)has emerged as a pivotal... Chitin is the second most abundant renewable polysaccharide on Earth.The degradation of chitin into soluble and bioactive N-acetyl chitooligosaccharides(NCOSs)and N-acetyl-D-glucosamine(GlcNAc)has emerged as a pivotal step in the efficient and sustainable utilization of chitin resources.However,because of its dense structure,high crystallinity,and poor solubility,chitin typically needs pretreatment via chemical,physical,and other methods before enzymatic conversion to enhance the accessibility between substrates and enzyme molecules.Consequently,there has been considerable interest in exploring the direct biological degradation of crystalline chitin as a cost-effective and environment-friendly technology.This review endeavors to present several biological methods for the direct degradation of chitin.We primarily focused on the importance of chitinase containing chitin-binding domain(CBD).Additionally,various modification strategies for increasing the degradation efficiency of crystalline chitin were introduced.Subsequently,the review systematically elucidated critical components of multi-enzyme catalytic systems,highlighting their potential for chitin degradation.Furthermore,the application of microorganisms in the degradation of crystalline chitin was also discussed.The insights in this review contribute to the explorations and investigations of enzymatic and microbial approaches for the direct degradation of crystalline chitin,thereby fostering advancements in biomass conversion. 展开更多
关键词 crystalline chitin CHITINASE biological degradation engineering MICROORGANISMS
下载PDF
Amino acid and mineral digestibility,bone ash,and plasma inositol is increased by including microbial phytase in diets for growing pigs
12
作者 Liz Vanessa Lagos Mike Richard Bedford Hans Henrik Stein 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第2期699-712,共14页
Background The effect of microbial phytase on amino acid and energy digestibility is not consistent in pigs,which may be related to the phytase dosage or the adaptation length to the diet.Therefore,an experiment was c... Background The effect of microbial phytase on amino acid and energy digestibility is not consistent in pigs,which may be related to the phytase dosage or the adaptation length to the diet.Therefore,an experiment was conducted to test the hypotheses that increasing dietary phytase after an 18-day adaptation period:1)increases nutrient and energy digestibility;2)increases plasma P,plasma inositol,and bone ash of young pigs;and 3)demonstrates that maximum phytate degradation requires more phytase than maximum P digestibility.Results Data indicated that increasing inclusion of phytase[0,250,500,1,000,2,000,and 4,000 phytase units(FTU)/kg feed]in corn-soybean meal-based diets increased apparent ileal digestibility(AID)of Trp(quadratic;P<0.05),and of Lys and Thr(linear;P<0.05),and tended to increase AID of Met(linear;P<0.10).Increasing dietary phytase also increased AID and apparent total tract digestibility(ATTD)of Ca and P(quadratic;P<0.05)and increased ATTD of K and Na(linear;P<0.05),but phytase did not influence the ATTD of Mg or gross energy.Concentrations of plasma P and bone ash increased(quadratic;P<0.05),and plasma inositol also increased(linear;P<0.05)with increasing inclusion of phytase.Reduced concentrations of inositol phosphate(IP)6 and IP5(quadratic;P<0.05),reduced IP4 and IP3(linear;P<0.05),but increased inositol concentrations(linear;P<0.05)were observed in ileal digesta as dietary phytase increased.The ATTD of P was maximized if at least 1,200 FTU/kg were used,whereas more than 4,000 FTU/kg were needed to maximize inositol release.Conclusions Increasing dietary levels of phytase after an 18-day adaptation period increased phytate and IP ester degradation and inositol release in the small intestine.Consequently,increasing dietary phytase resulted in improved digestibility of Ca,P,K,Na,and the first 4 limiting amino acids,and in increased concentrations of bone ash and plasma P and inositol.In a corn-soybean meal diet,maximum inositol release requires approximately 3,200 FTU/kg more phytase than that required for maximum P digestibility. 展开更多
关键词 Bone ash Inositol Nutrient digestibility PHYTASE Phytate degradation PIGS
下载PDF
Defect mediated losses and degradation of perovskite solar cells:Origin impacts and reliable characterization techniques
13
作者 Himangshu Baishy Ramkrishna Das Adhikari +5 位作者 Mayur Jagdishbhai Patel Deepak Yadav Tapashi Sarmah Mizanur Alam Manab Kalita Parameswar Krishnan lyer 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期217-253,共37页
The rapid advancement of halide-based hybrid perovskite materials has garnered significant research attention,particularly in the domain of photovoltaic technology.Owing to their exceptional optoelec-tronic properties... The rapid advancement of halide-based hybrid perovskite materials has garnered significant research attention,particularly in the domain of photovoltaic technology.Owing to their exceptional optoelec-tronic properties,they demonstrated power conversion efficiency(PcE)of over 25%in single junction solar cells.Despite the notable progress in PCE over the past decade,the inherent high defect density pre-senting in perovskite materials gives rise to several loss mechanisms and associated ion migration in per-ovskite solar cells(PsCs)during operational conditions.These factors collectively contribute to a significant stability challenge in PsCs,placing their longevity far behind for commercialization.While numerous reports have explored defects,ion migration,and their impacts on device performance,a com-prehensive correlation between the types of defects and the degradation kinetics of perovskite materials and PsCs has been lacking.In this context,this review aims to provide a comprehensive overview of the origins of defects and ion migration,emphasizing their correlation with the degradation kinetics of per-ovskite materials and PsCs,leveraging reliable characterization techniques.Furthermore,these charac-terization techniques are intended to comprehend loss mechanisms by different passivation approaches to enhance the durability and PCE of PSCs. 展开更多
关键词 Perovskite solar cells Defects lon migration DEGRADATION Stability
下载PDF
Photocatalytic application of magnesium spinel ferrite in wastewater remediation:A review
14
作者 Rohit Jasrotia Nikhil Jaswal +3 位作者 Jyoti Prakash Chan Choon Kit Jagpreet Singh Abhishek Kandwal 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期490-505,共16页
This review paper explores the efficacy of magnesium ferrite-based catalysts in photocatalytic degradation of organic contaminates(antibiotic and dyes).We report the influence of different doping strategies,synthesis ... This review paper explores the efficacy of magnesium ferrite-based catalysts in photocatalytic degradation of organic contaminates(antibiotic and dyes).We report the influence of different doping strategies,synthesis methods,and composite materials on the degradation efficiency of these pollutants.Our analysis reveals the versatile and promising nature of magnesium ferrite-based catalysts,offering the valuable insights into their practical application for restoring the environment.Due to the smaller band gap and magnetic nature of magnesium ferrite,it holds the benefit of utilising the broader spectrum of light while also being recoverable.The in-depth analysis of magnesium ferrites'photocatalytic mechanism could lead to the development of cheap and reliable photocatalyst for the wastewater treatment.This concise review offers a thorough summary of the key advancements in this field,highlighting the pivotal role of the magnesium ferrite based photocatalysts in addressing the pressing global issue of organic pollutants in wastewater. 展开更多
关键词 Magnesium ferrite WASTEWATER DYES ANTIBIOTICS Photocatalytic degradation
下载PDF
Maximizing the potential applications of plasma electrolytic oxidation coatings produced on Mg-based alloys in anti-corrosion,antibacterial,and photocatalytic targeting through harnessing the LDH/PEO dual structure
15
作者 Elham Nikoomanzari Arash Fattah-alhosseini 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2674-2694,共21页
There is an increasing interest in the development of Mg alloys,both for industrial and biomedical applications,due to their favorable characteristics such as being lightweight and robust.However,the inadequate corros... There is an increasing interest in the development of Mg alloys,both for industrial and biomedical applications,due to their favorable characteristics such as being lightweight and robust.However,the inadequate corrosion resistance and lack of antibacterial properties pose significant challenges in the industrial and biomedical applications,necessitating the implementation of advanced coating engineering techniques.Plasma electrolytic oxidation(PEO)has emerged as a preferred coating technique because of its distinctive properties and successful surface modification results.However,there is a continuous need for further enhancements to optimize the performance and functionalities of protective surface treatments.The integration of layered double hydroxide(LDH)into PEO coatings on Mg alloys presents a promising approach to bolstering protective properties.This thorough review delves into the latest developments in integrating LDH into PEO coatings for corrosion-related purposes.It particularly emphasizes the significant improvements in corrosion resistance,antibacterial effectiveness,and photocatalytic performance resulting from the incorporation of LDH into PEO coatings.The two key mechanisms that enhance the corrosion resistance of PEO coatings containing LDH are the anion exchangeability of the LDH structure and the pore-sealing effect.Moreover,the antibacterial activity of PEO coatings with LDH stemmed from the release of antibacterial agents stored within the LDH structure,alterations in pH levels,and the photothermal conversion property.Furthermore,by incorporating LDH into PEO coatings,new opportunities emerge for tackling environmental issues through boosted photocatalytic properties,especially in the realm of pollutant degradation. 展开更多
关键词 Mg alloy PEO LDH Corrosion Antibacterial activity Photocatalytic degradation
下载PDF
Evaluation of ruminal methane and ammonia formation and microbiota composition as affected by supplements based on mixtures of tannins and essential oils using Rusitec
16
作者 Giulia Foggi Melissa Terranova +9 位作者 Matteo Daghio Sergej L.Amelchanka Giuseppe Conte Simon Ineichen Monica Agnolucci Carlo Viti Alberto Mantino Arianna Buccioni Michael Kreuzer Marcello Mele 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第4期1607-1622,共16页
Background Dietary supplements based on tannin extracts or essential oil compounds(EOC)have been repeatedly reported as a promising feeding strategy to reduce the environmental impact of ruminant husbandry.A previous ... Background Dietary supplements based on tannin extracts or essential oil compounds(EOC)have been repeatedly reported as a promising feeding strategy to reduce the environmental impact of ruminant husbandry.A previous batch culture screening of various supplements identified selected mixtures with an enhanced potential to mitigate ruminal methane and ammonia formation.Among these,Q-2(named after quebracho extract and EOC blend 2,composed of carvacrol,thymol,and eugenol)and C-10(chestnut extract and EOC blend 10,consisting of oregano and thyme essential oils and limonene)have been investigated in detail in the present study with the semi-continuous rumen simulation technique(Rusitec)in three independent runs.For this purpose,Q-2 and C-10,dosed according to the previous study,were compared with a non-supplemented diet(negative control,NC)and with one supplemented with the commercial EOC-based Agolin^(R) Ruminant(positive control,PC).Results From d 5 to 10 of fermentation incubation liquid was collected and analysed for pH,ammonia,protozoa count,and gas composition.Feed residues were collected for the determination of ruminal degradability.On d 10,samples of incubation liquid were also characterised for bacterial,archaeal and fungal communities by high-throughput sequencing of 16S rRNA and 26S ribosomal large subunit gene amplicons.Regardless of the duration of the fermentation period,Q-2 and C-10 were similarly efficient as PC in mitigating either ammonia(-37%by Q-2,-34%by PC)or methane formation(-12%by C-10,-12%by PC).The PC was also responsible for lower feed degradability and bacterial and fungal richness,whereas Q-2 and C-10 effects,particularly on microbiome diversities,were limited compared to NC.Conclusions All additives showed the potential to mitigate methane or ammonia formation,or both,in vitro over a period of 10 d.However,several differences occurred between PC and Q-2/C-10,indicating different mechanisms of action.The pronounced defaunation caused by PC and its suggested consequences apparently determined at least part of the mitigant effects.Although the depressive effect on NDF degradability caused by Q-2 and C-10 might partially explain their mitigation properties,their mechanisms of action remain mostly to be elucidated. 展开更多
关键词 Additive Bacteria Continuous culture DEGRADABILITY Fermentation Fungi Greenhouse gas In vitro Microbiome RUMEN
下载PDF
Experimental and computational study of annealed nickel sulfide quantum dots for catalytic and antibacterial activity
17
作者 Muhammad Ikram Sawaira Moeen +5 位作者 Ali Haider Anwar Ul-Hamid Haya Alhummiany Hamoud H.Somaily Souraya Goumri-Said Mohammed Benali Kanoun 《Nano Materials Science》 EI CAS CSCD 2024年第3期355-364,共10页
This research investigates the hydrothermal synthesis and annealing duration effects on nickel sulfide(NiS_(2) quantum dots(QDs)for catalytic decolorization of methylene blue(MB)dye and antimicrobial efficacy.QD size ... This research investigates the hydrothermal synthesis and annealing duration effects on nickel sulfide(NiS_(2) quantum dots(QDs)for catalytic decolorization of methylene blue(MB)dye and antimicrobial efficacy.QD size increased with longer annealing,reducing catalytic activity.UV–vis,XRD,TEM,and FTIR analyses probed optical structural,morphological,and vibrational features.XRD confirmed NiS2's anorthic structure,with crystallite size growing from 6.53 to 7.81 nm during extended annealing.UV–Vis exhibited a bathochromic shift,reflecting reduced band gap energy(Eg)in NiS_(2).TEM revealed NiS_(2)QD formation,with agglomerated QD average size increasing from 7.13 to 9.65 nm with prolonged annealing.Pure NiS_(2) showed significant MB decolorization(89.85%)in acidic conditions.Annealed NiS_(2) QDs demonstrated notable antibacterial activity,yielding a 6.15mm inhibition zone against Escherichia coli(E.coli)compared to Ciprofloxacin.First-principles computation supported a robust interaction between MB and NiS_(2),evidenced by obtained adsorption energies.This study highlights the nuanced relationship between annealing duration,structural changes,and functional properties in NiS_(2)QDs,emphasizing their potential applications in catalysis and antibacterial interventions. 展开更多
关键词 NiS_(2) ANTIBACTERIAL quantum dots DYE degradation DFT
下载PDF
Precipitation and anthropogenic activities regulate the changes of NDVI in Zhegucuo Valley on the southern Tibetan Plateau
18
作者 ZHAO Wanglin WANG Hengying +1 位作者 ZHANG Huifang ZHANG Lin 《Journal of Mountain Science》 SCIE CSCD 2024年第2期607-618,共12页
Whether climate change or anthropogenic activities play a more pivotal role in regulating vegetation growth on the Tibetan Plateau is still controversial.A better understanding on grassland changes at a fine scale may... Whether climate change or anthropogenic activities play a more pivotal role in regulating vegetation growth on the Tibetan Plateau is still controversial.A better understanding on grassland changes at a fine scale may provide important guidance for local government policy and grassland management.Using two of the most reliable satellite NDVI products(MODIS NDVI and SPOT NDVI),we evaluated the dynamic of grasslands in the Zhegucuo valley on the southern Tibetan Plateau from 2000 to 2020,and analyzed its driving factors and relative influences of climate change and anthropogenic activities.Here,the key indicators of climate change were assumed to be precipitation and temperature.The main results were:(1)the grassland NDVI in Zhegucuo valley did not reflect a significant temporal change during the last 21 years.The variation of precipitation during the early growing season(GSP)resembled that of NDVI,and the GSP was positively correlated with NDVI.At the pixel level,the partial correlation analysis showed that 37.79%of the pixels depicted a positive relationship between GSP and NDVI,while 11.32%of the pixels showed a negative relationship between temperature during the early growing season(GST)and NDVI.(2)In view of the spatial distribution,the areas mainly controlled by GSP were generally distributed in the southern part,while those affected by GST stood in the eastern part,mainly around the Zhegucuo lake where most population in Cuomei County settled down.(3)Decreasing NDVI trends were mainly occurred in alpine steppe at lower elevations rather than alpine meadow at higher elevations.(4)The residual trend(RESTREND)analysis further indicated that the anthropogenic activities played a more pivotal role in regulating the annual changes of NDVI rather than climate factors in this area.Future studies should pay more attention on climate extremes rather than the simple temporal trends.Also,the influence of human activities on alpine grassland needs to be accessed and fully considered in future sustainable management. 展开更多
关键词 Anthropogenic activities Climate change PRECIPITATION FENCING Vegetation degradation
下载PDF
Thermal characteristic evolution of lithium-ion batteries during the whole lifecycle
19
作者 Guangxu Zhang Xuezhe Wei +4 位作者 Donghai Chen Xueyuan Wang Siqi Chen Jiangong Zhu Haifeng Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期534-547,共14页
This work extensively investigates the thermal characteristic evolution of lithium-ion batteries under different degradation paths,and the evolution mechanism through multi-angle characterization is revealed.Under dif... This work extensively investigates the thermal characteristic evolution of lithium-ion batteries under different degradation paths,and the evolution mechanism through multi-angle characterization is revealed.Under different degradation paths,the evolution trend of temperature rise rate remains unchanged with respect to depth of discharge during the adiabatic discharge process,albeit to varying degrees of alteration.The temperature rise rate changes significantly with aging during the adiabatic discharge process under low-temperature cycling and high-rate cycling paths.The total heat generation rate,irreversible heat generation rate,and reversible heat generation rate exhibit similar evolution behavior with aging under different degradation paths.The interval range of endothermic process of reversible electrochemical reactions increases and the contribution of irreversible heat to the total heat increases with aging.To further standardize the assessment of different degradation paths on the thermal characteristics,this work introduces the innovative concept of“Ampere-hour temperature rise”.In low-temperature cycling and high-rate cycling paths,the ampere-hour temperature rise increases significantly with aging,particularly accentuated with higher discharge rates.Conversely,in high-temperature cycling and high-temperature storage paths,the ampere-hour temperature rise remains relatively stable during the initial stages of aging,yet undergoes a notable increase in the later stages of aging.The multi-angle characterization reveals distinct thermal evolution behavior under different degradation paths primarily attributed to different behavior changes of severe side reactions,such as lithium plating.The findings provide crucial insights for the safe utilization and management of lithium–ion batteries throughout the whole lifecycle. 展开更多
关键词 Lithium-ion batteries Adiabatic discharge Thermal characteristics Ampere-hour temperaturerise DEGRADATION
下载PDF
Evaluation of soil loss severity and ecological restoration approach for sustainable agriculture in the Hindu Kush, Karakoram and Himalaya region
20
作者 Arshad ASHRAF Imran AHMAD 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1509-1521,共13页
Soil erosion has resulted in removal of the topsoils containing fine soil particles and plant nutrients, causing decrease in soil fertility in the Hindu Kush, Karakoram and Himalaya(HKH) region. The existing productio... Soil erosion has resulted in removal of the topsoils containing fine soil particles and plant nutrients, causing decrease in soil fertility in the Hindu Kush, Karakoram and Himalaya(HKH) region. The existing production of cereal crop grains has been reduced to one third of the potential crop grains production owing to land degradation and poor farming practices. It is necessary to assess risk of soil loss and identify appropriate controlling measures to address issues of low agriculture productivity and water insecurity in the region. In the present study, severity of soil loss was predicted using Revised Universal Loss Equation(RUSLE) and ecological measures were identified for sustainable mountain agriculture in the HKH region of Upper Indus Basin, Pakistan. Overall 62.6% area was found to have very low risk of soil loss, i.e., <5 t/(ha·yr), 15.8% area low risk, i.e., 5-25 t/(ha·yr) and 7.5% area moderate risk, i.e., 25-50 t/(ha·yr) in the region. The risk was high, i.e., 50-100 t/(ha·yr) and very high, i.e., >100 t/(ha·yr) in about 6.8% and 7.4% areas respectively. The mean rate of soil loss was about 41.9 t/(ha·yr) in the Hindu Kush, 31.1 t/(ha·yr) in the Himalayas, 18.8 t/(ha·yr) in the Karakoram and overall 29.7 t/(ha·yr) in the three HKH ranges. As such no considerable measures have been adopted by the communities for restoration of the degraded areas except raising fruit/farm trees and supporting limited social forestry for their livelihoods. The slopes cleared for cultivation and susceptible to erosion may be stabilized through sowing/planting of multi-purpose plant species and formation of proper bench terraces. The conservation of forest ecosystem and pastures at higher elevations would help in reducing overland water flow, risk of flash flood hazard and minimizing sediment loads in the downstream. It is essential to adopt site-specific resource conservation techniques and restore possible ecosystem health for sustainable agriculture and economic development in the region in future. 展开更多
关键词 Climate change ERODIBILITY Indus basin Land degradation Slope stabilization
下载PDF
上一页 1 2 170 下一页 到第
使用帮助 返回顶部