[Objective]The aim of this study is to explore the effects of grassland degradation on soil physical and chemical properties.[Method]The ratio of plant root to soil and soil texture on Alpine Meadow were investigated ...[Objective]The aim of this study is to explore the effects of grassland degradation on soil physical and chemical properties.[Method]The ratio of plant root to soil and soil texture on Alpine Meadow were investigated in this study,and soil available N,P,K,Cu,Zn,organic matter and pH value were also analyzed by routine analysis of soil nutrients in different degraded grasslands.[Result]With the intensification of degraded gradient and the soil depth,the ratio of plant root to soil was decreased gradually.The highest ratio of plant root to soil was in 0-10 cm depth of soil in grassland with different degraded gradients,while its ratio of plant root to soil changed from 0.001 to 0.040 with soil type of loam.Soil chemical characteristic changed in different degraded gradients.The content of available N,P,K reduced significantly with the soil depth and the intensification of degraded gradients.The content of Cu and Zn was relatively lack in degraded grassland.[Conclusion]There is no significant correlation between nutrition content or pH value and the succession degree of degraded grassland.展开更多
In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are susta...In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content.展开更多
Carex brunnescens(Pers.)Poir.is considered to be the only clonal herb found to date that can develop and form fixed dunes in Maqu alpine degraded grasslands of northwestern China.However,due to strong dormant characte...Carex brunnescens(Pers.)Poir.is considered to be the only clonal herb found to date that can develop and form fixed dunes in Maqu alpine degraded grasslands of northwestern China.However,due to strong dormant characteristics of C.brunnescens seeds,the sand-fixing effect of the plant is severely limited.This study explores a technique that can rapidly promote the seed germination of C.brunnescens,and also investigates the adaptation and sand-fixing effect by cultivating C.brunnescens seedlings to establish living sand barriers in the sand ridges of moving sand dunes.Results show that the seed germination rate obtained a maximum of 63.7%or 65.1%when seeds were treated with 150 mg/L gibberellic acid(GA3)for 24 h followed by soaking in sulfuric acid(98%H2SO4)for 2.5 min or sodium hydroxide(10%NaOH)for 3.5 h,and then germinated(25°C in daytime and 5°C at nighttime)in darkness for 10 d.After breaking seed dormancy of C.brunnescens,the living sand barrier of C.brunnescens(plant spacing 15−20 cm;sand barrier spacing 10−20 m)was established in the perpendicular direction to the main wind in the middle and lower parts of the sand ridges on both sides of the moving sand dunes.When the sand ridges were leveled by wind erosion,the living sand barrier(plant spacing 15−20 cm;sand barrier spacing 0.5−1.0 m)of C.brunnescens was reestablished on the wind-eroded flat ground.Finally,a stable sand-fixing surface can be formed after connecting the living sand barriers on both sides,thus achieving a good sand-fixing effect.These findings suggest that rapid seed germination technology combined with the sand−fixing method of C.brunnescens can shorten the seed germination period and make the seedling establishment become much easier which may be an effective strategy to restore and reconstruct Maqu degraded grasslands.展开更多
[Objective] The aim was to study the effect of different soak treatments on breaking seed dormancy in soil seed bank from different degraded grasslands. [Method] Different concentrations of H2SO4,GA3 and KNO3 were use...[Objective] The aim was to study the effect of different soak treatments on breaking seed dormancy in soil seed bank from different degraded grasslands. [Method] Different concentrations of H2SO4,GA3 and KNO3 were used for soaking the seeds in the soil seed bank from different degraded grasslands,and the germination number of seeds was detected. [Result] When the seeds from soil seed bank were soaked with 60%,70%,80% and 90% H2SO4,the germination number of seeds was 0,indicating that the germination of seeds was inhibited; when the seeds were soaked with GA3,the germination number of seeds increased with the concentration of GA3 increasing. When the concentration of GA3 increased to 0.10%,the germination of seeds was inhibited; when the seeds were soaked with 0.2% KNO3,the germination number of seeds was greater than the blank control. [Conclusion] The number of remaining seeds was more in the soil seed banks collected from moderately degraded grassland and heavily degraded grassland; while the number of remaining seeds was small in the soil seed banks collected from lightly degraded grassland and extremely degraded grassland.展开更多
Fractal geometry is an important method in soil science,and many studies have used fractal theory to examine soil properties and the relationships with other eco-environmental factors.However,there have been few studi...Fractal geometry is an important method in soil science,and many studies have used fractal theory to examine soil properties and the relationships with other eco-environmental factors.However,there have been few studies examining soil particle volume fractal dimension in alpine grasslands.To study the volume fractal dimension of soil particles (D) and its relationships with soil salt,soil nutrient and plant species diversity,we conducted an experiment on an alpine grassland under different disturbance degrees:non-disturbance (N0),light disturbance (L),moderate disturbance (M) and heavy disturbance (H).The results showed that (1) Ds varied from 2.573 to 2.635 among the different disturbance degrees and increased with increasing degrees of disturbance.(2) Shannon-Wiener diversity index,Pielou's evenness index and Margalef richness index reached their highest values at the M degree,indicating that moderate disturbance is beneficial to the increase of plant species diversity.(3) In the L and M degrees,there was a significant positive correlation between D and clay content and a significant negative correlation between D and soil organic matter (SOM).In the H degree,D was significantly and positively correlated with total salt (TS).The results suggested that to a certain extent,D can be used to characterize the uniformity of soil texture in addition to soil fertility characteristics.(4) For the L degree,there was a significant negative correlation between D and the Shannon-Wiener diversity index; while for the M degree,there was a significant negative correlation between D and Pielou's evenness index.展开更多
Methane (OH4), carbon dioxide (CO2) and nitrous oxide (N2O) are known to be major greenhouse gases that contribute to global warming. To identify the flux dynamics of these greenhouse gases is, therefore, of gre...Methane (OH4), carbon dioxide (CO2) and nitrous oxide (N2O) are known to be major greenhouse gases that contribute to global warming. To identify the flux dynamics of these greenhouse gases is, therefore, of great significance. In this paper, we conducted a comparative study on an alpine grassland and alpine wetland at the Bayinbuluk Grassland Eco-system Research Station, Chinese Academy of Sciences. By using opaque, static, manual stainless steel chambers and gas chromatography, we measured the fluxes of CH4, N2O and CO2 from the grassland and wetland through an in situ monitoring study from May 2010 to October 2012. The mean flux rates of CH4, N2O and CO2 for the experimental alpine wetland in the growing season (from May to October) were estimated at 322.4 μg/(m2.h), 16.7 μg/(m2.h) and 76.7 mg/(m2.h), respectively; and the values for the alpine grassland were -88.2 μg/(m2.h), 12.7 μg/(m2.h), 57.3 mg/(m2.h), respectively. The gas fluxes showed large seasonal and annual variations, suggesting weak fluxes in the non-growing season. The relationships between these gas fluxes and environmental factors were analyzed for the two alpine ecosystems. The results showed that air temperature, precipitation, soil temperature and soil moisture can greatly influence the fluxes of CH4, N2O and CO2, but the alpine grassland and alpine wetland showed different feedback mechanisms under the same climate and environmental conditions.展开更多
Using stat ic chamber technique, fluxes of CO 2 , CH 4 and N 2 O were measured in the alpine grassland area from July 2000 to July 2001, d eterminations of mean fluxes showed that CO 2 and N 2 O were gene rally releas...Using stat ic chamber technique, fluxes of CO 2 , CH 4 and N 2 O were measured in the alpine grassland area from July 2000 to July 2001, d eterminations of mean fluxes showed that CO 2 and N 2 O were gene rally released from the soil, while the alpine grassland accounted for a weak CH 4 sink. Fluxes of CO 2 , CH 4 and N 2 O ranged widely. The highest CO 2 emission occurred in August, whereas a lmost 90% of the whole year emission occurred in the growing season. But the variations of CH 4 and N 2 O fluxes did not show any clear patterns over the one-year-experim ent. During a daily variation, the maximum CO 2 emission occurred at 16:00, and then decreased to the minimum emi ssion in the early morning. Daily pattern analyses indicated that the variation in CO 2 fluxes was positively related to air temperatures (R 2 =0.73) and soil temperatures at a depth of 5 cm (R 2 =0.86), whereas daily variations in CH 4 and N 2 O fluxes were poorly explained by soil temperatures and climatic va riables. CO 2 emissions in this area were much lower than other grasslands in plain areas .展开更多
In order to restore a degraded alkaline grassland, the local government implemented a large restoration project using fences in Changling county, Jilin province, China, in 2000. Grazing was excluded from the protected...In order to restore a degraded alkaline grassland, the local government implemented a large restoration project using fences in Changling county, Jilin province, China, in 2000. Grazing was excluded from the protected area, whereas the grazed area was continuously grazed at 8.5 dry sheep equivalent(DSE)/hm2. In the current research, soil and plant samples were taken from grazed and fenced areas to examine changes in vegetation and soil properties in 2005, 2006 and 2008. Results showed that vegetation characteristics and soil properties improved significantly in the fenced area compared with the grazed area. In the protected area the vegetation cover, height and above- and belowground biomass increased significantly. Soil pH, electrical conductivity and bulk density decreased significantly, but soil organic carbon and total nitrogen concentration increased greatly in the protected area. By comparing the vegetation and soil characteristics with pre-degraded grassland, we found that vegetation can recover 6 years after fencing, and soil pH can be restored 8 years after fencing. However, the restoration of soil organic carbon, total nitrogen and total phosphorus concentrations needed 16, 30 and 19 years, respectively. It is recommended that the stocking rate should be reduced to 1/3 of the current carrying capacity, or that a grazing regime of 1-year of grazing followed by a 2-year rest is adopted to sustain the current status of vegetation and soil resources. However, if N fertilizer is applied, the rest period could be shortened, depending on the rate of application.展开更多
Remote sensing data from the Terra Moderate-Resolution Imaging Spectroradiometer (MODIS) and geospatial data were used to estimate grass yield and livestock carrying capacity in the Tibetan Autonomous Prefecture of Go...Remote sensing data from the Terra Moderate-Resolution Imaging Spectroradiometer (MODIS) and geospatial data were used to estimate grass yield and livestock carrying capacity in the Tibetan Autonomous Prefecture of Golog, Qing-hai, China. The MODIS-derived normalized difference vegetation index (MODIS-NDVI) data were correlated with the aboveground green biomass (AGGB) data from the aboveground harvest method. Regional regression model between the MODIS-NDVI and the common logarithm (LOG10) of the AGGB was significant (r2 = 0.51, P < 0.001), it was, there-fore, used to calculate the maximum carrying capacity in sheep-unit year per hectare. The maximum livestock carrying capacity was then adjusted to the theoretical livestock carrying capacity by the reduction factors (slope, distance to water, and soil erosion). Results indicated that the grassland conditions became worse, with lower aboveground palatable grass yield, plant height, and cover compared with the results obtained in 1981. At the same time, although the actual livestock numbers decreased, they still exceeded the proper theoretical livestock carrying capacity, and overgrazing rates ranged from 27.27% in Darlag County to 293.99% in Baima County. Integrating remote sensing and geographical information system technologies, the spatial and temporal conditions of the alpine grassland, trend, and projected stocking rates could be forecasted for decision making.展开更多
In many ecosystems ungulates have coexisted with grasslands over long periods of time. However, high densities of grazing animals may change the floristic and structural characteristics of vegetation, reduce biodivers...In many ecosystems ungulates have coexisted with grasslands over long periods of time. However, high densities of grazing animals may change the floristic and structural characteristics of vegetation, reduce biodiversity, and increase soil erosion, potentially triggering abrupt and rapid changes in ecosystem condition. Alternate stable state theory provides a framework for understanding this type of dynamic. In the Sanjiangyuan atop the Qinghai-Tibetan plateau (QTP), grassland degradation has been accompanied by irruptions of native burrowing animals, which has accentuated the loss of ground cover. Severely degraded areas of alpine meadows are referred to as 'Heitutan'. Here, using the framework of alternate stable state theory, we describe the proximate and ultimate drivers of the formation of Heitutan on the QTP, and we assess prospects for recovery, in relation to the degree of biophysical alteration, of these alpine meadows. Effective rehabilitation measures must address the underlying causes of degradation rather than their symptoms. Heitutan degradation is not uni-causal. Rather it reflects different mechanisms operating at different spatio-temporal scales across this vast region. Underlying causes include overly aggressive exploitation of the grasslands (e.g. overgrazing), amplification of grazing and erosion damage by small mammals when outbreaks occur, and/or climate change. Given marked variability in environmental conditions and stressors, restorative efforts must vary across the region. Restoration efforts are likely toyield greatest success if moderately and severely degraded areas are targeted as the first priority in management programmes, before these areas are transformed into extreme Heitutan.展开更多
Fertilization has been shown to have suppressive effects on arbuscular mycorrhizal fungi(AMF) and root hemiparasites separately in numerous investigations, but its effects on AMF in the presence of root hemiparasites ...Fertilization has been shown to have suppressive effects on arbuscular mycorrhizal fungi(AMF) and root hemiparasites separately in numerous investigations, but its effects on AMF in the presence of root hemiparasites remain untested. In view of the contrasting nutritional effects of AMF and root hemiparasites on host plants, we tested the hypothesis that fertilization may not show strong suppressive effects on AMF when a plant community was infested by abundant hemiparasitic plants. Plants and soil samples were collected from experimental field plots in Bayanbulak Grassland, where N and P fertilizers had been applied for three continuous years for control against a spreading root hemiparasite, Pedicularis kansuensis. Shoot and root biomass of each plant functional group were determined. Root AMF colonization levels, soil spore abundance, and extraradical hyphae length density were measured for three soil depths(0 e10 cm, 10 e20 cm, 20 e30 cm). Partial 18 S r RNA gene sequencing was used to detect AMF diversity and community composition. In addition, we analyzed the relationship between relative abundance of different AMF genera and environmental factors using Spearman's correlation method. In contrast to suppressive effects reported by many previous studies, fertilization showed no significant effects on AMF root colonization or AMF species diversity in the soil. Instead, a marked increase in soil spore abundance and extraradical hyphae length density were observed. However, fertilization altered relative abundance and AMF composition in the soil. Our results support the hypothesis that fertilization does not significantly influence the abundance and diversity of AMF in a plant community infested by P. kansuensis.展开更多
The principles of remotely estimating grassland cover density in an alpine meadow soil from space lie in the synchronous collection of in situ samples with the satellite pass and statistically linking these cover dens...The principles of remotely estimating grassland cover density in an alpine meadow soil from space lie in the synchronous collection of in situ samples with the satellite pass and statistically linking these cover densities to their image properties according to their geographic coordinates. The principles and procedures for quantifying grassland cover density from satellite image data were presented with an example from Qinghai Lake, China demonstrating how quantification could be made more accurate through the integrated use of remote sensing and global positioning systems (GPS). An empirical model was applied to an entire satellite image to convert pixel values into ground cover density. Satellite data based on 68 field samples was used to produce a map of ten cover densities. After calibration a strong linear regression relationship (r2 = 0.745) between pixel values on the satellite image and in situ measured grassland cover density was established with an 89% accuracy level. However, to minimize positional uncertainty of field samples, integrated use of hyperspatial satellite data and GPS could be utilized. This integration could reduce disparity in ground and space sampling intervals, and improve future quantification accuracy even more.展开更多
Ecosystem multifunctionality(EMF), the simultaneous provision of multiple ecosystem functions, is often affected by biodiversity and environmental factors. We know little about how the interactions between biodiversit...Ecosystem multifunctionality(EMF), the simultaneous provision of multiple ecosystem functions, is often affected by biodiversity and environmental factors. We know little about how the interactions between biodiversity and environmental factors affect EMF. In this case study, a structural equation model was used to clarify climatic and geographic pathways that affect EMF by varying biodiversity in the Tibetan alpine grasslands. In addition to services related to carbon, nitrogen, and water cycling, forage supply, which is related to plantproductivity and palatability, was included in the EMF index. The results showed that 72% of the variation in EMF could be explained by biodiversity and other environmental factors. The ratio of palatable richness to all species richness explained 8.3% of the EMF variation. We found that air temperature, elevation, and latitude all affected EMF, but in different ways. Air temperature and elevation impacted the aboveground parts of the ecosystem, which included plant height, aboveground biomass, richness of palatable species, and ratio of palatable richness to all species richness. Latitude affected EMF by varying both aboveground and belowground parts of the ecosystem, which included palatable speciesrichness and belowground biomass. Our results indicated that there are still uncertainties in the biodiversity–EMF relationships related to the variable components of EMF, and climatic and geographic factors. Clarification of pathways that affect EMF using structural equation modeling techniques could elucidate the mechanisms by which environmental changes affect EMF.展开更多
Characteristics of plant species diversity of two types of grassland communities (alpine meadow and alpine grassland) was examined and the relationship between species diversity and community dynamics was determined u...Characteristics of plant species diversity of two types of grassland communities (alpine meadow and alpine grassland) was examined and the relationship between species diversity and community dynamics was determined using GPS positioning and in situscrutinization of community of alpine grassland in Nakchu prefecture of Tibet Autonomous Region. The result indicated that: ① there was an unobvious difference between grassland communities in terms of richness index of plant, evenness index, dominant index and diversity index. The species diversity index followed the order Kobresia humilis meadow >Stipa purpurea steppe>K. littledalei meadow; ② the original community created high diversity, while the degenerative community suffering from serious disturbance was of low diversity; ③ the diversity of community plants was closely related to changes of species biomass, and the growth and decline of species in the community; ④ grazing disturbance is a key factor of community dynamics, leading to coexistence of various secondary successions of communities, diversified suitable habitats and species diversity. improvements展开更多
In order to further determine the nitrogen demand of plants in alpine grassland ecosystem,different nitrogen levels( 0,1,2,4,8,16,24,32 g/m2)were designed through field control to study the responses of different plan...In order to further determine the nitrogen demand of plants in alpine grassland ecosystem,different nitrogen levels( 0,1,2,4,8,16,24,32 g/m2)were designed through field control to study the responses of different plant functional groups( grass,sedge and weed) to different nitrogen application levels in the aboveground biomass and soil inorganic nitrogen( nitrate nitrogen and ammonium nitrogen).The results showed that with the increase of nitrogen application rate,the aboveground biomass of different functional groups increased linearly,and the soil inorganic nitrogen content increased with the increase of nitrogen application rate,among which treatments N16,N24 and N32 increased significantly in soil nitrate nitrogen content( P < 0.05).The results showed that the optimal nitrogen content in alpine grasslands was 8 g/m^2,which could not only promote plant growth,but also effectively control soil nitrate nitrogen content.展开更多
Owing to the joint effects of ecosystem fragility,anthropogenic disturbance and climate change,alpine grasslands(alpine meadow,alpine steppe and alpine desert)have experienced serious degradation during the past sever...Owing to the joint effects of ecosystem fragility,anthropogenic disturbance and climate change,alpine grasslands(alpine meadow,alpine steppe and alpine desert)have experienced serious degradation during the past several decades.Grasslands degradation has severely affected the delivery of ecosystem multifunctionality(EMF)and services,and then threatens the livelihood of local herdsmen and ecological security of China.However,we still lack comprehensive insights about the effects of degradation and climatic factors on EMF of alpine grasslands,especially for alpine desert ecosystem.Therefore,we applied a large-scale field investigation to answer this question.Our results suggested grassland degradation significantly decreased the belowground ecosystem multifunctionality(BEMF)and EMF of alpine grasslands and aboveground ecosystem multifunctionality(AEMF)of alpine meadow,while did not reduce the AEMF of alpine steppe and desert.Except for the insignificant difference between degraded steppe and degraded desert in AEMF,the alpine meadow showed the highest AEMF,BEMF and EMF,alpine steppe ranked the second and alpine desert was the lowest.AEMF,BEMF and EMF of health alpine grasslands were strongly affected by mean annual precipitation(MAP)(19%-51%)and mean annual temperature(MAT)(9%-36%),while those of degraded meadow and degraded desert were not impacted by precipitation and temperature.AEMF and BEMF showed a synergistic relationship in healthy alpine grasslands(12%-28%),but not in degraded grasslands.Our findings emphasized the urgency of implementing the feasible ecological restoration project to mitigate the negative influences of grassland degradation on EMF of alpine ecosystems.展开更多
Understanding the vertical distribution patterns of soil microbial community and its driving factors in alpine grasslands in the humid regions of the Tibet Plateau might be of great significance for predicting the soi...Understanding the vertical distribution patterns of soil microbial community and its driving factors in alpine grasslands in the humid regions of the Tibet Plateau might be of great significance for predicting the soil microbial community of this type of vegetation in response to environmental change. Using phospholipid fatty acids (PLFA), we investigated soil microbial community composition along an elevational gradient (3094-4131 m above sea level) on Mount Yajiageng, and we explored the impact of plant functional groups and soil chemistry on the soil microbial community. Except for Arbuscular Mycorrhizal fungi (AM fungi) biomarker 18:2ω6,9 increasing significantly, other biomarkers did not show a consistent trend with the elevational gradient. Microbial biomass quantified by total PLFAs did not show the elevational trend and had mean values ranging from 1.64 to 4.09 ktmol per g organic carbon (OC), which had the maximum value at the highest site. Bacterial PLFAs exhibited a similar trend with total PLFAs, and its mean values ranged from 0.82 to 1.81 μmol (g OC)-1. The bacterial to fungal biomass ratios had the minimum value at the highest site, which might be related to temperature and soil total nitrogen (TN). The ratios of Gram-negative to Gram-positive bacteria had a significantly negative correlation with soil TN and had the maximum value at the highest site. Leguminous plant coverage and soil TN explained 58% of the total variation in the soil microbial community and could achieve the same interpretation as the whole model. Other factors may influence the soil microbial community through interaction with leguminous plant coverage and soil TN. Soil chemistry and plant functional group composition in substantial amounts explained different parts of the variation within the soil microbial community, and the interaction between them had no impact on the soil microbial community maybe beeause long-term grazing greatly reduces litter. In sum, although there were obvious differences in soil microbial communities along the elevation gradient, there were no clear elevational trends found in general. Plant functional groups and soil chemistry respectively affect the different aspects of soil microbial community. Leguminous plant coverage and soil TN had important effects in shaping soil microbial community.展开更多
In this study, two different methods including Digital Camera and Reference Panel (DCRP) and traditional in situ fPAR observation for measuring the in situ point fPAR of very short alpine grass vegetation were compa...In this study, two different methods including Digital Camera and Reference Panel (DCRP) and traditional in situ fPAR observation for measuring the in situ point fPAR of very short alpine grass vegetation were compared, and the Moderate Resolution Imaging Spectroradiometer (MODIS) fPAR products were evaluated and validated by in situ point data on the alpine grassland over the Northern Tibetan Plateau, which is sensitive to climate change and vulnerable to anthropogenic activities. Results showed that the MODIS alpine grassland fPAR product, examined by using DCRP, and traditional in situ fPAR observation had a significant relationship at the spatial and temporal scales. The decadal MODIS fPAR trend analysis showed that, average growing season fPAR increased by 1.2 × 10^-4 per year and in total increased 0.86% from 2002 to 2011 in alpine grassland, when most of the fPAR increments occurred in southeast and center of the Northern Tibetan Plateau, the alpine grassland tended to recover from degradation slightly. However, climatic factors have influenced the various alpine grassland vegetation fPAR over a period of 10 years; precipitation significantly affected the alpine meadow fPAR in the eastern region, whereas temperature considerably influenced the alpine desert steppe fPAR in the west region. These findings suggest that the regional heterogeneity in alpine grassland fPAR results from various environmental factors, except for vegetation characteristics, such as canopy structure and leaf area.展开更多
Alpine grassland is the typical vegetation in the eastern Qinghai–Tibetan Plateau,which has important ecological service functions,and also supports the development of alpine stock farming.In recent years,under both ...Alpine grassland is the typical vegetation in the eastern Qinghai–Tibetan Plateau,which has important ecological service functions,and also supports the development of alpine stock farming.In recent years,under both the natural and human disturbance,alpine grasslands in this area have appeared to different degrees of desertification.A diagnosis of the desertification degree serves as the basis for grassland ecological restoration.This study constructs a comprehensive index based on remote sensing called alpine grassland desertification index(AGDI)to monitor the areas and degree of desertification.The most relevant indicators of desertification,namely,vegetation fraction,aboveground biomass,soil moisture,and land surface temperature,were selected to establish AGDI.The geographical detector is used to reselect and assess these indicators.The results show that the overall verification accuracy of AGDI is 82.05%.In particular,the accuracy of identifying severe desertification is the highest.Our study confirms that the desertification of alpine grasslands in the eastern Qinghai–Tibetan Plateau is characterized by fragmentation.Thus,Landsat-8 OLI data with a spatial resolution of 30 m is more suitable than MODIS data for alpine grasslands desertification monitoring.The research results can provide a methodological reference for monitoring desertification of alpine grasslands and other grassland regions in the world.展开更多
The Qinghai-Tibet Plateau(QTP)has the largest and highest alpine grassland ecosystem in the world,which is considered to be the most sensitive and vulnerable ecosystem to climate change.Its dynamic changes and driving...The Qinghai-Tibet Plateau(QTP)has the largest and highest alpine grassland ecosystem in the world,which is considered to be the most sensitive and vulnerable ecosystem to climate change.Its dynamic changes and driving mechanism have always been widely researched.The Qomolangma National Nature Preserve(QNNP),with the largest altitude difference in the world,was selected as the study area to analyse the spatial-temporal dynamics of grassland coverage and the different characteristics of elevation gradients at the southern slope(SS)and northern slope(NS)with MODIS MOD13Q1 NDVI and MOD11A2 land surface temperature data from 2000to 2019 using the Mann-Kendall trend test and Theil-Sen slope methods.Further,the response mechanism of grassland coverage to climate warming is discussed.The results revealed that from 2000 to 2019,the grassland coverage change in the study area is mainly stable.The increased area proportion of grassland coverage on the southern slope is significantly higher than that on the northern slope,and the decreased area proportion of grassland coverage on the northern slope is significantly greater than that on the southern slope.The change characteristics of grassland coverage in the QNNP exhibit an obvious elevation gradient;the higher the elevation,the greater the increased area proportion of grassland coverage,particularly on the SS.The land surface temperature can be used as a proxy for analysing the temporal and spatial variation trends of air temperature in the QNNP.With the increase of the altitude,the land surface temperature rise rate on both the southern slope and northern slope exhibited an increasing trend,and the sensitivity of grassland coverage to temperature rise was higher on the northern slope.The water condition was the decisive factor for the horizontal and vertical spatial heterogeneity of the dynamic change of grassland coverage,and the melting of glaciers and thawing of permafrost were important sources of water for grassland growth in the QNNP.Climate warming promotes the growth of grassland in areas with a sufficient water supply,but adversely affects the growth of grassland in areas with insufficient water supplies,which will be further intensified by human activities.展开更多
基金Supported by National Natural Science Foundation of China(30700563)the Middleaged Fund in Qinghai University(2009-QN-07)~~
文摘[Objective]The aim of this study is to explore the effects of grassland degradation on soil physical and chemical properties.[Method]The ratio of plant root to soil and soil texture on Alpine Meadow were investigated in this study,and soil available N,P,K,Cu,Zn,organic matter and pH value were also analyzed by routine analysis of soil nutrients in different degraded grasslands.[Result]With the intensification of degraded gradient and the soil depth,the ratio of plant root to soil was decreased gradually.The highest ratio of plant root to soil was in 0-10 cm depth of soil in grassland with different degraded gradients,while its ratio of plant root to soil changed from 0.001 to 0.040 with soil type of loam.Soil chemical characteristic changed in different degraded gradients.The content of available N,P,K reduced significantly with the soil depth and the intensification of degraded gradients.The content of Cu and Zn was relatively lack in degraded grassland.[Conclusion]There is no significant correlation between nutrition content or pH value and the succession degree of degraded grassland.
基金supported by the National Nature Science Foundations of China(32160269)the International Science and Technology Cooperation Project of Qinghai province of China(2022-HZ-817).
文摘In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content.
基金the Project of the Youth Talent Development Fund of the Northwest Institute of Eco−Environment and ResourcesChinese Academy of Science(CAREERI)(Y851C81001)+1 种基金the National Natural Science Foundation of China(41877162)the Instrument Functional Development Project from the Technology Service Center of CAREERI(Y429C51007).
文摘Carex brunnescens(Pers.)Poir.is considered to be the only clonal herb found to date that can develop and form fixed dunes in Maqu alpine degraded grasslands of northwestern China.However,due to strong dormant characteristics of C.brunnescens seeds,the sand-fixing effect of the plant is severely limited.This study explores a technique that can rapidly promote the seed germination of C.brunnescens,and also investigates the adaptation and sand-fixing effect by cultivating C.brunnescens seedlings to establish living sand barriers in the sand ridges of moving sand dunes.Results show that the seed germination rate obtained a maximum of 63.7%or 65.1%when seeds were treated with 150 mg/L gibberellic acid(GA3)for 24 h followed by soaking in sulfuric acid(98%H2SO4)for 2.5 min or sodium hydroxide(10%NaOH)for 3.5 h,and then germinated(25°C in daytime and 5°C at nighttime)in darkness for 10 d.After breaking seed dormancy of C.brunnescens,the living sand barrier of C.brunnescens(plant spacing 15−20 cm;sand barrier spacing 10−20 m)was established in the perpendicular direction to the main wind in the middle and lower parts of the sand ridges on both sides of the moving sand dunes.When the sand ridges were leveled by wind erosion,the living sand barrier(plant spacing 15−20 cm;sand barrier spacing 0.5−1.0 m)of C.brunnescens was reestablished on the wind-eroded flat ground.Finally,a stable sand-fixing surface can be formed after connecting the living sand barriers on both sides,thus achieving a good sand-fixing effect.These findings suggest that rapid seed germination technology combined with the sand−fixing method of C.brunnescens can shorten the seed germination period and make the seedling establishment become much easier which may be an effective strategy to restore and reconstruct Maqu degraded grasslands.
基金Supported by National Natural Science Foundation of China (30860061)National Science and Technology Support Program(2007BAC06B01)~~
文摘[Objective] The aim was to study the effect of different soak treatments on breaking seed dormancy in soil seed bank from different degraded grasslands. [Method] Different concentrations of H2SO4,GA3 and KNO3 were used for soaking the seeds in the soil seed bank from different degraded grasslands,and the germination number of seeds was detected. [Result] When the seeds from soil seed bank were soaked with 60%,70%,80% and 90% H2SO4,the germination number of seeds was 0,indicating that the germination of seeds was inhibited; when the seeds were soaked with GA3,the germination number of seeds increased with the concentration of GA3 increasing. When the concentration of GA3 increased to 0.10%,the germination of seeds was inhibited; when the seeds were soaked with 0.2% KNO3,the germination number of seeds was greater than the blank control. [Conclusion] The number of remaining seeds was more in the soil seed banks collected from moderately degraded grassland and heavily degraded grassland; while the number of remaining seeds was small in the soil seed banks collected from lightly degraded grassland and extremely degraded grassland.
基金financially supported by the National Basic Research Program of China(2009CB825103)
文摘Fractal geometry is an important method in soil science,and many studies have used fractal theory to examine soil properties and the relationships with other eco-environmental factors.However,there have been few studies examining soil particle volume fractal dimension in alpine grasslands.To study the volume fractal dimension of soil particles (D) and its relationships with soil salt,soil nutrient and plant species diversity,we conducted an experiment on an alpine grassland under different disturbance degrees:non-disturbance (N0),light disturbance (L),moderate disturbance (M) and heavy disturbance (H).The results showed that (1) Ds varied from 2.573 to 2.635 among the different disturbance degrees and increased with increasing degrees of disturbance.(2) Shannon-Wiener diversity index,Pielou's evenness index and Margalef richness index reached their highest values at the M degree,indicating that moderate disturbance is beneficial to the increase of plant species diversity.(3) In the L and M degrees,there was a significant positive correlation between D and clay content and a significant negative correlation between D and soil organic matter (SOM).In the H degree,D was significantly and positively correlated with total salt (TS).The results suggested that to a certain extent,D can be used to characterize the uniformity of soil texture in addition to soil fertility characteristics.(4) For the L degree,there was a significant negative correlation between D and the Shannon-Wiener diversity index; while for the M degree,there was a significant negative correlation between D and Pielou's evenness index.
基金funded by the National Basic Research Program of China (2009CB825103)the National Natural Science Foundation of China (41340041)the West Light Foundation of the Chinese Academy of Sciences (XBBS201206)
文摘Methane (OH4), carbon dioxide (CO2) and nitrous oxide (N2O) are known to be major greenhouse gases that contribute to global warming. To identify the flux dynamics of these greenhouse gases is, therefore, of great significance. In this paper, we conducted a comparative study on an alpine grassland and alpine wetland at the Bayinbuluk Grassland Eco-system Research Station, Chinese Academy of Sciences. By using opaque, static, manual stainless steel chambers and gas chromatography, we measured the fluxes of CH4, N2O and CO2 from the grassland and wetland through an in situ monitoring study from May 2010 to October 2012. The mean flux rates of CH4, N2O and CO2 for the experimental alpine wetland in the growing season (from May to October) were estimated at 322.4 μg/(m2.h), 16.7 μg/(m2.h) and 76.7 mg/(m2.h), respectively; and the values for the alpine grassland were -88.2 μg/(m2.h), 12.7 μg/(m2.h), 57.3 mg/(m2.h), respectively. The gas fluxes showed large seasonal and annual variations, suggesting weak fluxes in the non-growing season. The relationships between these gas fluxes and environmental factors were analyzed for the two alpine ecosystems. The results showed that air temperature, precipitation, soil temperature and soil moisture can greatly influence the fluxes of CH4, N2O and CO2, but the alpine grassland and alpine wetland showed different feedback mechanisms under the same climate and environmental conditions.
基金National Key Project for Basic Research,No.G1998040800
文摘Using stat ic chamber technique, fluxes of CO 2 , CH 4 and N 2 O were measured in the alpine grassland area from July 2000 to July 2001, d eterminations of mean fluxes showed that CO 2 and N 2 O were gene rally released from the soil, while the alpine grassland accounted for a weak CH 4 sink. Fluxes of CO 2 , CH 4 and N 2 O ranged widely. The highest CO 2 emission occurred in August, whereas a lmost 90% of the whole year emission occurred in the growing season. But the variations of CH 4 and N 2 O fluxes did not show any clear patterns over the one-year-experim ent. During a daily variation, the maximum CO 2 emission occurred at 16:00, and then decreased to the minimum emi ssion in the early morning. Daily pattern analyses indicated that the variation in CO 2 fluxes was positively related to air temperatures (R 2 =0.73) and soil temperatures at a depth of 5 cm (R 2 =0.86), whereas daily variations in CH 4 and N 2 O fluxes were poorly explained by soil temperatures and climatic va riables. CO 2 emissions in this area were much lower than other grasslands in plain areas .
基金supported by the National Key Basic Research Program of China (2011CB403203)the Strategic Science and Technology Guide Project of Chinese Academy of Sciences (XDA05050401)
文摘In order to restore a degraded alkaline grassland, the local government implemented a large restoration project using fences in Changling county, Jilin province, China, in 2000. Grazing was excluded from the protected area, whereas the grazed area was continuously grazed at 8.5 dry sheep equivalent(DSE)/hm2. In the current research, soil and plant samples were taken from grazed and fenced areas to examine changes in vegetation and soil properties in 2005, 2006 and 2008. Results showed that vegetation characteristics and soil properties improved significantly in the fenced area compared with the grazed area. In the protected area the vegetation cover, height and above- and belowground biomass increased significantly. Soil pH, electrical conductivity and bulk density decreased significantly, but soil organic carbon and total nitrogen concentration increased greatly in the protected area. By comparing the vegetation and soil characteristics with pre-degraded grassland, we found that vegetation can recover 6 years after fencing, and soil pH can be restored 8 years after fencing. However, the restoration of soil organic carbon, total nitrogen and total phosphorus concentrations needed 16, 30 and 19 years, respectively. It is recommended that the stocking rate should be reduced to 1/3 of the current carrying capacity, or that a grazing regime of 1-year of grazing followed by a 2-year rest is adopted to sustain the current status of vegetation and soil resources. However, if N fertilizer is applied, the rest period could be shortened, depending on the rate of application.
基金Supported by the National Basic Research Program (973 Program) of China (Nos.2009CB421102 and 2005CB422005-01)the Second Scheme of CAS Action Plan for the Development of Western China (No.KZCX2-XB2-06-02)the National Key Technology R&D Program of China (No.2006BAC01A02-01)
文摘Remote sensing data from the Terra Moderate-Resolution Imaging Spectroradiometer (MODIS) and geospatial data were used to estimate grass yield and livestock carrying capacity in the Tibetan Autonomous Prefecture of Golog, Qing-hai, China. The MODIS-derived normalized difference vegetation index (MODIS-NDVI) data were correlated with the aboveground green biomass (AGGB) data from the aboveground harvest method. Regional regression model between the MODIS-NDVI and the common logarithm (LOG10) of the AGGB was significant (r2 = 0.51, P < 0.001), it was, there-fore, used to calculate the maximum carrying capacity in sheep-unit year per hectare. The maximum livestock carrying capacity was then adjusted to the theoretical livestock carrying capacity by the reduction factors (slope, distance to water, and soil erosion). Results indicated that the grassland conditions became worse, with lower aboveground palatable grass yield, plant height, and cover compared with the results obtained in 1981. At the same time, although the actual livestock numbers decreased, they still exceeded the proper theoretical livestock carrying capacity, and overgrazing rates ranged from 27.27% in Darlag County to 293.99% in Baima County. Integrating remote sensing and geographical information system technologies, the spatial and temporal conditions of the alpine grassland, trend, and projected stocking rates could be forecasted for decision making.
基金supported by Special Fund for Agroscientific Research in the Public Interest(201203041)the National Natural Sciences Foundation of China(41161084)International Science & Technology Cooperation Program of China(2011DFG93160,2011DFA20820)
文摘In many ecosystems ungulates have coexisted with grasslands over long periods of time. However, high densities of grazing animals may change the floristic and structural characteristics of vegetation, reduce biodiversity, and increase soil erosion, potentially triggering abrupt and rapid changes in ecosystem condition. Alternate stable state theory provides a framework for understanding this type of dynamic. In the Sanjiangyuan atop the Qinghai-Tibetan plateau (QTP), grassland degradation has been accompanied by irruptions of native burrowing animals, which has accentuated the loss of ground cover. Severely degraded areas of alpine meadows are referred to as 'Heitutan'. Here, using the framework of alternate stable state theory, we describe the proximate and ultimate drivers of the formation of Heitutan on the QTP, and we assess prospects for recovery, in relation to the degree of biophysical alteration, of these alpine meadows. Effective rehabilitation measures must address the underlying causes of degradation rather than their symptoms. Heitutan degradation is not uni-causal. Rather it reflects different mechanisms operating at different spatio-temporal scales across this vast region. Underlying causes include overly aggressive exploitation of the grasslands (e.g. overgrazing), amplification of grazing and erosion damage by small mammals when outbreaks occur, and/or climate change. Given marked variability in environmental conditions and stressors, restorative efforts must vary across the region. Restoration efforts are likely toyield greatest success if moderately and severely degraded areas are targeted as the first priority in management programmes, before these areas are transformed into extreme Heitutan.
基金financially supported by the Natural Science Foundation of China (U1303201, No. 31400440 and No. 31370512)China Agriculture Research System (CARS-34)+2 种基金Natural Science Foundation of Yunnan Province (2016FB059)funding for Airong Li from The Youth Innovation Promotion Association of Chinese Academy of Sciencesthe Young Academic and Technical Leader Raising Foundation of Yunnan Province (2014HB047)
文摘Fertilization has been shown to have suppressive effects on arbuscular mycorrhizal fungi(AMF) and root hemiparasites separately in numerous investigations, but its effects on AMF in the presence of root hemiparasites remain untested. In view of the contrasting nutritional effects of AMF and root hemiparasites on host plants, we tested the hypothesis that fertilization may not show strong suppressive effects on AMF when a plant community was infested by abundant hemiparasitic plants. Plants and soil samples were collected from experimental field plots in Bayanbulak Grassland, where N and P fertilizers had been applied for three continuous years for control against a spreading root hemiparasite, Pedicularis kansuensis. Shoot and root biomass of each plant functional group were determined. Root AMF colonization levels, soil spore abundance, and extraradical hyphae length density were measured for three soil depths(0 e10 cm, 10 e20 cm, 20 e30 cm). Partial 18 S r RNA gene sequencing was used to detect AMF diversity and community composition. In addition, we analyzed the relationship between relative abundance of different AMF genera and environmental factors using Spearman's correlation method. In contrast to suppressive effects reported by many previous studies, fertilization showed no significant effects on AMF root colonization or AMF species diversity in the soil. Instead, a marked increase in soil spore abundance and extraradical hyphae length density were observed. However, fertilization altered relative abundance and AMF composition in the soil. Our results support the hypothesis that fertilization does not significantly influence the abundance and diversity of AMF in a plant community infested by P. kansuensis.
基金supported by the National Basic Research Program of China (No. 2006CB400505) and the National NaturalSciences Foundation of China (Nos. 49971056 and 40171007)
文摘The principles of remotely estimating grassland cover density in an alpine meadow soil from space lie in the synchronous collection of in situ samples with the satellite pass and statistically linking these cover densities to their image properties according to their geographic coordinates. The principles and procedures for quantifying grassland cover density from satellite image data were presented with an example from Qinghai Lake, China demonstrating how quantification could be made more accurate through the integrated use of remote sensing and global positioning systems (GPS). An empirical model was applied to an entire satellite image to convert pixel values into ground cover density. Satellite data based on 68 field samples was used to produce a map of ten cover densities. After calibration a strong linear regression relationship (r2 = 0.745) between pixel values on the satellite image and in situ measured grassland cover density was established with an 89% accuracy level. However, to minimize positional uncertainty of field samples, integrated use of hyperspatial satellite data and GPS could be utilized. This integration could reduce disparity in ground and space sampling intervals, and improve future quantification accuracy even more.
基金supported by the National Natural Science Foundation of China (Grant No. 31570460)the National Key Research and Development Program of China (Grant No. 2016YFC0502004)
文摘Ecosystem multifunctionality(EMF), the simultaneous provision of multiple ecosystem functions, is often affected by biodiversity and environmental factors. We know little about how the interactions between biodiversity and environmental factors affect EMF. In this case study, a structural equation model was used to clarify climatic and geographic pathways that affect EMF by varying biodiversity in the Tibetan alpine grasslands. In addition to services related to carbon, nitrogen, and water cycling, forage supply, which is related to plantproductivity and palatability, was included in the EMF index. The results showed that 72% of the variation in EMF could be explained by biodiversity and other environmental factors. The ratio of palatable richness to all species richness explained 8.3% of the EMF variation. We found that air temperature, elevation, and latitude all affected EMF, but in different ways. Air temperature and elevation impacted the aboveground parts of the ecosystem, which included plant height, aboveground biomass, richness of palatable species, and ratio of palatable richness to all species richness. Latitude affected EMF by varying both aboveground and belowground parts of the ecosystem, which included palatable speciesrichness and belowground biomass. Our results indicated that there are still uncertainties in the biodiversity–EMF relationships related to the variable components of EMF, and climatic and geographic factors. Clarification of pathways that affect EMF using structural equation modeling techniques could elucidate the mechanisms by which environmental changes affect EMF.
文摘Characteristics of plant species diversity of two types of grassland communities (alpine meadow and alpine grassland) was examined and the relationship between species diversity and community dynamics was determined using GPS positioning and in situscrutinization of community of alpine grassland in Nakchu prefecture of Tibet Autonomous Region. The result indicated that: ① there was an unobvious difference between grassland communities in terms of richness index of plant, evenness index, dominant index and diversity index. The species diversity index followed the order Kobresia humilis meadow >Stipa purpurea steppe>K. littledalei meadow; ② the original community created high diversity, while the degenerative community suffering from serious disturbance was of low diversity; ③ the diversity of community plants was closely related to changes of species biomass, and the growth and decline of species in the community; ④ grazing disturbance is a key factor of community dynamics, leading to coexistence of various secondary successions of communities, diversified suitable habitats and species diversity. improvements
基金Supported by the National Natural Science Foundation of China(41371226)
文摘In order to further determine the nitrogen demand of plants in alpine grassland ecosystem,different nitrogen levels( 0,1,2,4,8,16,24,32 g/m2)were designed through field control to study the responses of different plant functional groups( grass,sedge and weed) to different nitrogen application levels in the aboveground biomass and soil inorganic nitrogen( nitrate nitrogen and ammonium nitrogen).The results showed that with the increase of nitrogen application rate,the aboveground biomass of different functional groups increased linearly,and the soil inorganic nitrogen content increased with the increase of nitrogen application rate,among which treatments N16,N24 and N32 increased significantly in soil nitrate nitrogen content( P < 0.05).The results showed that the optimal nitrogen content in alpine grasslands was 8 g/m^2,which could not only promote plant growth,but also effectively control soil nitrate nitrogen content.
基金financially supported by the grants from the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0307)the National Key R&D Program of China(2016YFC0501906)+1 种基金Key R&D Program of Qinghai Province(2019-SF-145 and 2018-NK-A2)Qinghaiinnovation platform construction project(2017-ZJY20)。
文摘Owing to the joint effects of ecosystem fragility,anthropogenic disturbance and climate change,alpine grasslands(alpine meadow,alpine steppe and alpine desert)have experienced serious degradation during the past several decades.Grasslands degradation has severely affected the delivery of ecosystem multifunctionality(EMF)and services,and then threatens the livelihood of local herdsmen and ecological security of China.However,we still lack comprehensive insights about the effects of degradation and climatic factors on EMF of alpine grasslands,especially for alpine desert ecosystem.Therefore,we applied a large-scale field investigation to answer this question.Our results suggested grassland degradation significantly decreased the belowground ecosystem multifunctionality(BEMF)and EMF of alpine grasslands and aboveground ecosystem multifunctionality(AEMF)of alpine meadow,while did not reduce the AEMF of alpine steppe and desert.Except for the insignificant difference between degraded steppe and degraded desert in AEMF,the alpine meadow showed the highest AEMF,BEMF and EMF,alpine steppe ranked the second and alpine desert was the lowest.AEMF,BEMF and EMF of health alpine grasslands were strongly affected by mean annual precipitation(MAP)(19%-51%)and mean annual temperature(MAT)(9%-36%),while those of degraded meadow and degraded desert were not impacted by precipitation and temperature.AEMF and BEMF showed a synergistic relationship in healthy alpine grasslands(12%-28%),but not in degraded grasslands.Our findings emphasized the urgency of implementing the feasible ecological restoration project to mitigate the negative influences of grassland degradation on EMF of alpine ecosystems.
基金supported by the CAS/SAFEA International Partnership Program for Creative Research Teams (KZZD-EW-TZ-06)
文摘Understanding the vertical distribution patterns of soil microbial community and its driving factors in alpine grasslands in the humid regions of the Tibet Plateau might be of great significance for predicting the soil microbial community of this type of vegetation in response to environmental change. Using phospholipid fatty acids (PLFA), we investigated soil microbial community composition along an elevational gradient (3094-4131 m above sea level) on Mount Yajiageng, and we explored the impact of plant functional groups and soil chemistry on the soil microbial community. Except for Arbuscular Mycorrhizal fungi (AM fungi) biomarker 18:2ω6,9 increasing significantly, other biomarkers did not show a consistent trend with the elevational gradient. Microbial biomass quantified by total PLFAs did not show the elevational trend and had mean values ranging from 1.64 to 4.09 ktmol per g organic carbon (OC), which had the maximum value at the highest site. Bacterial PLFAs exhibited a similar trend with total PLFAs, and its mean values ranged from 0.82 to 1.81 μmol (g OC)-1. The bacterial to fungal biomass ratios had the minimum value at the highest site, which might be related to temperature and soil total nitrogen (TN). The ratios of Gram-negative to Gram-positive bacteria had a significantly negative correlation with soil TN and had the maximum value at the highest site. Leguminous plant coverage and soil TN explained 58% of the total variation in the soil microbial community and could achieve the same interpretation as the whole model. Other factors may influence the soil microbial community through interaction with leguminous plant coverage and soil TN. Soil chemistry and plant functional group composition in substantial amounts explained different parts of the variation within the soil microbial community, and the interaction between them had no impact on the soil microbial community maybe beeause long-term grazing greatly reduces litter. In sum, although there were obvious differences in soil microbial communities along the elevation gradient, there were no clear elevational trends found in general. Plant functional groups and soil chemistry respectively affect the different aspects of soil microbial community. Leguminous plant coverage and soil TN had important effects in shaping soil microbial community.
文摘In this study, two different methods including Digital Camera and Reference Panel (DCRP) and traditional in situ fPAR observation for measuring the in situ point fPAR of very short alpine grass vegetation were compared, and the Moderate Resolution Imaging Spectroradiometer (MODIS) fPAR products were evaluated and validated by in situ point data on the alpine grassland over the Northern Tibetan Plateau, which is sensitive to climate change and vulnerable to anthropogenic activities. Results showed that the MODIS alpine grassland fPAR product, examined by using DCRP, and traditional in situ fPAR observation had a significant relationship at the spatial and temporal scales. The decadal MODIS fPAR trend analysis showed that, average growing season fPAR increased by 1.2 × 10^-4 per year and in total increased 0.86% from 2002 to 2011 in alpine grassland, when most of the fPAR increments occurred in southeast and center of the Northern Tibetan Plateau, the alpine grassland tended to recover from degradation slightly. However, climatic factors have influenced the various alpine grassland vegetation fPAR over a period of 10 years; precipitation significantly affected the alpine meadow fPAR in the eastern region, whereas temperature considerably influenced the alpine desert steppe fPAR in the west region. These findings suggest that the regional heterogeneity in alpine grassland fPAR results from various environmental factors, except for vegetation characteristics, such as canopy structure and leaf area.
基金funded by the Youth Projects of National Natural Science Foundation of China(Grants No.41701100)the Science and technology project of Sichuan Provincial Department of Education(Grants No.15ZB0023)。
文摘Alpine grassland is the typical vegetation in the eastern Qinghai–Tibetan Plateau,which has important ecological service functions,and also supports the development of alpine stock farming.In recent years,under both the natural and human disturbance,alpine grasslands in this area have appeared to different degrees of desertification.A diagnosis of the desertification degree serves as the basis for grassland ecological restoration.This study constructs a comprehensive index based on remote sensing called alpine grassland desertification index(AGDI)to monitor the areas and degree of desertification.The most relevant indicators of desertification,namely,vegetation fraction,aboveground biomass,soil moisture,and land surface temperature,were selected to establish AGDI.The geographical detector is used to reselect and assess these indicators.The results show that the overall verification accuracy of AGDI is 82.05%.In particular,the accuracy of identifying severe desertification is the highest.Our study confirms that the desertification of alpine grasslands in the eastern Qinghai–Tibetan Plateau is characterized by fragmentation.Thus,Landsat-8 OLI data with a spatial resolution of 30 m is more suitable than MODIS data for alpine grasslands desertification monitoring.The research results can provide a methodological reference for monitoring desertification of alpine grasslands and other grassland regions in the world.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant Nos.2019QZKK0301 and 2019QZKK0307)。
文摘The Qinghai-Tibet Plateau(QTP)has the largest and highest alpine grassland ecosystem in the world,which is considered to be the most sensitive and vulnerable ecosystem to climate change.Its dynamic changes and driving mechanism have always been widely researched.The Qomolangma National Nature Preserve(QNNP),with the largest altitude difference in the world,was selected as the study area to analyse the spatial-temporal dynamics of grassland coverage and the different characteristics of elevation gradients at the southern slope(SS)and northern slope(NS)with MODIS MOD13Q1 NDVI and MOD11A2 land surface temperature data from 2000to 2019 using the Mann-Kendall trend test and Theil-Sen slope methods.Further,the response mechanism of grassland coverage to climate warming is discussed.The results revealed that from 2000 to 2019,the grassland coverage change in the study area is mainly stable.The increased area proportion of grassland coverage on the southern slope is significantly higher than that on the northern slope,and the decreased area proportion of grassland coverage on the northern slope is significantly greater than that on the southern slope.The change characteristics of grassland coverage in the QNNP exhibit an obvious elevation gradient;the higher the elevation,the greater the increased area proportion of grassland coverage,particularly on the SS.The land surface temperature can be used as a proxy for analysing the temporal and spatial variation trends of air temperature in the QNNP.With the increase of the altitude,the land surface temperature rise rate on both the southern slope and northern slope exhibited an increasing trend,and the sensitivity of grassland coverage to temperature rise was higher on the northern slope.The water condition was the decisive factor for the horizontal and vertical spatial heterogeneity of the dynamic change of grassland coverage,and the melting of glaciers and thawing of permafrost were important sources of water for grassland growth in the QNNP.Climate warming promotes the growth of grassland in areas with a sufficient water supply,but adversely affects the growth of grassland in areas with insufficient water supplies,which will be further intensified by human activities.