The redistribution of three-dimensional(3D)geostress during underground tunnel excavation can easily induce to shear failure along rockmass structural plane,potentially resulting in engineering disasters.However,the c...The redistribution of three-dimensional(3D)geostress during underground tunnel excavation can easily induce to shear failure along rockmass structural plane,potentially resulting in engineering disasters.However,the current understanding of rockmass shear behavior is mainly based on shear tests under2D stress without lateral stress,the shear fracture under 3D stress is unclear,and the relevant 3D shear fracture theory research is deficient.Therefore,this study conducted true triaxial cyclic loading and unloading shear tests on intact and bedded limestone under different normal stressσnand lateral stressσpto investigate the shear strength,deformation,and failure characteristics.The results indicate that under differentσnandσp,the stress–strain hysteresis loop area gradually increases from nearly zero in the pre-peak stage,becomes most significant in the post-peak stage,and then becomes very small in the residual stage as the number of shear test cycles increases.The shear peak strength and failure surface roughness almost linearly increase with the increase inσn,while they first increase and then gradually decrease asσpincreases,with the maximum increases of 12.9%for strength and 15.1%for roughness.The shear residual strength almost linearly increases withσn,but shows no significant change withσp.Based on the acoustic emission characteristic parameters during the test process,the shear fracture process and microscopic failure mechanism were analyzed.As the shear stressτincreases,the acoustic emission activity,main frequency,and amplitude gradually increase,showing a significant rise during the cycle near the peak strength,while remaining almost unchanged in the residual stage.The true triaxial shear fracture process presents tensile-shear mixture failure characteristics dominated by microscopic tensile failure.Based on the test results,a 3D shear strength criterion considering the lateral stress effect was proposed,and the determination methods and evolution of the shear modulus G,cohesion cjp,friction angleφjp,and dilation angleψjpduring rockmass shear fracture process were studied.Under differentσnandσp,G first rapidly decreases and then tends to stabilize;cjp,φjp,andψjpfirst increase rapidly to the maximum value,then decrease slowly,and finally remain basically unchanged.A 3D shear mechanics model considering the effects of lateral stress and shear parameter degradation was further established,and a corresponding numerical calculation program was developed based on3D discrete element software.The proposed model effectively simulates the shear failure evolution process of rockmass under true triaxial shear test,and is further applied to successfully reveal the failure characteristics of surrounding rocks with structural planes under different combinations of tunnel axis and geostress direction.展开更多
[Objective] This study aimed to solve the mulch plastic film pollution problems in Xinjiang, in order to provide reliable theoretical basis for the research on the degradation mechanism of biodegradable plastic films....[Objective] This study aimed to solve the mulch plastic film pollution problems in Xinjiang, in order to provide reliable theoretical basis for the research on the degradation mechanism of biodegradable plastic films. [Method] The effect of illumination intensity on the decomposition of decomposable mulching films was investigated through simulating the field condition in laboratory. Regression analysis was employed to fit the processes of film decompositions. [Result] The weight loss ratios of different types of plastic films were closely related with the illumination. There was no sundry produced during the degradation process, but the weight was reduced, indicating that degradation produced gas, thus, ultraviolet rays had destructive effect on mulch plastic films. Different types of plastic films showed significant differences in the degradation speeds, and under the same conditions, the degradation speed of S4# with the induction period of 30 d was the fastest. With the extension of uv illumination time, the degradation became cumulative degradation process. [Conclusion] Under the uv rays, the weight loss ratio and illumination hours is regarded as a positive correlation relationship. The significant inspection shows that the data fitted degradation model can be described by the logistic model of Y = a/(1+b×e -ct), and all the parameters show significant differences (P0.01).展开更多
Hot carrier effects of p MOSFETs with different oxide thicknesses are studied in low gate voltage range.All electrical parameters follow a power law relationship with stress time,but degradation slope is dependent ...Hot carrier effects of p MOSFETs with different oxide thicknesses are studied in low gate voltage range.All electrical parameters follow a power law relationship with stress time,but degradation slope is dependent on gate voltage.For the devices with thicker oxides,saturated drain current degradation has a close relationship with the product of gate current and electron fluence.For small dimensional devices,saturated drain current degradation has a close relationship with the electron fluence.This degradation model is valid for p MOSFETs with 0 25μm channel length and different gate oxide thicknesses.展开更多
Planting trees was used as one of cost-effective measures for desertification control in add and semi-add areas of China. Woodland degradation, however, is becoming an inevitable issue in these areas. In this paper, a...Planting trees was used as one of cost-effective measures for desertification control in add and semi-add areas of China. Woodland degradation, however, is becoming an inevitable issue in these areas. In this paper, a typical county, Ejin Holo County, Inner Mongolia, China was selected for its assessment of artificial woodland degradation. A conceptual model for woodland degradation was delineated qualitatively based on field sampling survey, and four model-based indicators as humidity index (HI), vegetation index (NDVI), soil type (ST) and soil erosion modulus (EM) were screened out and used to a GIS-based method for artificial woodland degradation assessment in this semi-add agro-pastoral transitional area. All the indicator layers were overlaid and desertification assessed using simplified equation with equal weights for each indicators. The assessment results showed that in 336. 09 km^2 of total woodland area, 311.35 km^2 woodland were under degradation, and the area for slight, medium, severe degradation was 78.97, 119.73 and 112.65 km^2, respectively. It was suggested that much attention should be paid on woodland improvement and plant species selection, especially shrub species, before revegetation in similar areas.展开更多
Distribution-based degradation models (or graphical approach in some literature) occur in a wide range of applications. However, few of existing methods have taken the validation of the built model into consideratio...Distribution-based degradation models (or graphical approach in some literature) occur in a wide range of applications. However, few of existing methods have taken the validation of the built model into consideration. A validation methodology for distribution-based models is proposed in this paper. Since the model can be expressed as consisting of assumptions of model structures and embedded model parameters, the proposed methodology carries out the validation from these two aspects. By using appropriate statistical techniques, the rationality of degradation distributions, suitability of fitted models and validity of degradation models are validated respectively. A new statistical technique based on control limits is also proposed, which can be implemented in the validation of degradation models' validity. The case study on degradation modeling of an actual accelerometer shows that the proposed methodology is an effective solution to the validation problem of distribution-based de qradation models.展开更多
The major concern of this article is to address the shortcoming and outgoing effects of the human activities on the landscape patterns and their consequences in the Sefidrood River watershed in Iran. A flow of data in...The major concern of this article is to address the shortcoming and outgoing effects of the human activities on the landscape patterns and their consequences in the Sefidrood River watershed in Iran. A flow of data includes three inputs; each of them belongs to one part of three zones of a fluvial system. The three parts of the Sefidrood River fluvial system include Zone 1,a sub-watershed as degradation modeling site,Zone 2,Sefidrood Dam as dam site,and Zone 3,17km away from the Sefidrood River path to the Caspian Sea as ending point site. The degradation model in the Zone 1 provides a suitable mean for decision support system to decrease the human impacts on each small district. The maximum number for degradation coefficient belongs to the small district with the highest physiographic density,relatively cumulative activities,and a lower figure for the habitat vulnerability. The human degradation impact were not limited to the upstream. The investigation to the Sefidrood Dam and ending point of the Sefidrood River depicts that sedimentation continues as a significant visual impact in the Sefidrood Dam reservoir and the estuary.展开更多
A new method based on resolution degradation model is proposed to improve both spatial and spectral quality of the synthetic images. Some ETM+ panchromatic and multispectral images are used to assess the new method. I...A new method based on resolution degradation model is proposed to improve both spatial and spectral quality of the synthetic images. Some ETM+ panchromatic and multispectral images are used to assess the new method. Its spatial and spectral effects are evaluated by qualitative and quantitative measures and the results are compared with those of IHS, PCA, Brovey, OWT(Orthogonal Wavelet Transform) and RWT(Redundant Wavelet Transform). The results show that the new method can keep almost the same spatial resolution as the panchromatic images, and the spectral effect of the new method is as good as those of wavelet-based methods.展开更多
In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testin...In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testing of a blade.A novel non-linear fatigue damage accumulation model is proposed using the damage assessment theories of composite laminates for the first time.Then,a stiffness degradation model is established based on the correlation of fatigue damage and residual stiffness of the composite laminates.Finally,a stiffness degradation model for the blade is presented based on the full-scale fatigue testing.The scientific rationale of the proposed stiffness model of blade is verified by using full-scale fatigue test data of blade with a total length of 52.5 m.The results indicate that the proposed stiffness degradation model of the blade agrees well with the fatigue testing results of this blade.This work provides a basis for evaluating the fatigue damage and lifetime of blade under cyclic fatigue loading.展开更多
In order to study the fatigue failure mode and fatigue life laws of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer ( FRP ) sheets, fatigue experiments are carried out, considering two hybrid ratios ...In order to study the fatigue failure mode and fatigue life laws of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer ( FRP ) sheets, fatigue experiments are carried out, considering two hybrid ratios of 1 : 1 and 2:1 under different stress levels from 0.6 to 0.95. The results show that fractures occur first in carbon fibers or aramid fibers for the specimens with hybrid ratio of 1: 1, namely B1A1 and B1C1, while a fracture occurs first in basalt fibers for the specimens with a hybrid ratio of 2: 1, namely B2A1 and B2C1. The fatigue lives of the hybrid FRP sheets increase with the improvement of the content of carbon fibers or aramid fibers, and the influence of the carbon fibers content improvement to fatigue life is more significant. The fatigue performance of B2A1 is relatively worse, while the fatigue performance of B1C1 and B2C1 is relatively better. Finally, a new fatigue stiffness degradation model with dual variables and double inflection points is presented, which is applicable to both hybrid and normal FRP sheets.展开更多
For the large number of nonlinear degradation devices existing in a project, the existing methods have not systematically studied the effects of random effect on the remaining lifetime(RL),the accuracy and efficiency ...For the large number of nonlinear degradation devices existing in a project, the existing methods have not systematically studied the effects of random effect on the remaining lifetime(RL),the accuracy and efficiency of the parameters estimation are not high, and the current degradation state of the target device is not accurately estimated. In this paper, a nonlinear Wiener degradation model with random effect is proposed and the corresponding probability density function(PDF) of the first hitting time(FHT)is deduced. A parameter estimation method based on modified expectation maximum(EM) algorithm is proposed to obtain the estimated value of fixed coefficient and the priori value of random coefficient in the model. The posterior value of the random coefficient and the current degradation state of target device are updated synchronously by the state space model(SSM) and the Kalman filter algorithm. The PDF of RL with random effect is deduced. A simulation example is analyzed to verify that the proposed method has the obvious advantage over the existing methods in parameter estimation error and RL prediction accuracy.展开更多
Underwater imaging is widely used in ocean,river and lake exploration,but it is affected by properties of water and the optics.In order to solve the lower-resolution underwater image formed by the influence of water a...Underwater imaging is widely used in ocean,river and lake exploration,but it is affected by properties of water and the optics.In order to solve the lower-resolution underwater image formed by the influence of water and light,the image super-resolution reconstruction technique is applied to the underwater image processing.This paper addresses the problem of generating super-resolution underwater images by convolutional neural network framework technology.We research the degradation model of underwater images,and analyze the lower-resolution factors of underwater images in different situations,and compare different traditional super-resolution image reconstruction algorithms.We further show that the algorithm of super-resolution using deep convolution networks(SRCNN)which applied to super-resolution underwater images achieves good results.展开更多
An accelerated decay test and a natural decay test were conducted synchronically to explore the strength degradation of decaying wood members under long-term exposure to natural environment.A natural decay test was ca...An accelerated decay test and a natural decay test were conducted synchronically to explore the strength degradation of decaying wood members under long-term exposure to natural environment.A natural decay test was carried out to measure the bending strength,compressive strength parallel to grain and modulus of elasticity of the wood members,with 6 groups of specimens decayed in natural environment for 3 to 18 months respectively.To compare with corresponding decay test,in which 6 other groups of specimens were measured under accelerated conditions.The experimental data collected were evaluated by Pearson productmoment for the correlation.The results indicate that the mechanical properties of the accelerated decay were highly correlated with those in natural environment,both of which decreased in the same trend.Under the given test conditions,the mean value of the accelerated decay test data were curve-fitted to achieve the time-dependent degradation model of the bending strength,the compressive strength parallel to grain,as well as the modulus of elasticity.Due to the high correlation,the acceleration shift factors(ASF)of the two tests were derived,where the bending strength of 2.934,the compressive strength parallel to grain of 2.519 and the elastic modulus of 2.346 were employed to formulate the strength degradation models in the long-term natural environment.The results verify that the exponential functionσ=σ0e^(-βt)enables to exactly capture the degradation of the mechanical properties of wood members decayed in natural environment.展开更多
Hydraulic pumps belong to reliable long-life hydraulic components. The reliability evaluation includes characters such as long test period,high cost,and high power loss and so on. Based on the principle of energy-savi...Hydraulic pumps belong to reliable long-life hydraulic components. The reliability evaluation includes characters such as long test period,high cost,and high power loss and so on. Based on the principle of energy-saving and power recovery,a small sample hydraulic pump reliability test rig is built,and the service life of hydraulic pump is predicted,and then the sampling period of reliability test is optimized. On the basis of considering the performance degradation mechanism of hydraulic pump,the feature information of degradation distribution of hydraulic pump volumetric efficiency during the test is collected,so an optimal degradation path model of feature information is selected from the aspect of fitting accuracy,and pseudo life data are obtained. Then a small sample reliability test of period constrained optimization search strategy for hydraulic pump is constructed to solve the optimization problem of the test sampling period and tightening end threshold,and it is verified that the accuracy of the minimum sampling period by the non-parametric hypothes is tested. Simulation result shows it could possess instructional significance and referenced value for hydraulic pump reliability life evaluation and the test's research and design.展开更多
The subsea all-electric Christmas tree(XT) is a key equipment in subsea production systems.Once it fails,the marine environment will be seriously polluted.Therefore,strict reliability analysis and measures to improve ...The subsea all-electric Christmas tree(XT) is a key equipment in subsea production systems.Once it fails,the marine environment will be seriously polluted.Therefore,strict reliability analysis and measures to improve reliability must be performed before a subsea all-electric XT is launched;such measures are crucial to subsea safe production.A fault-tolerant control system was developed in this paper to improve the reliability of XT.A dual-factor degradation model for electrical control system components was proposed to improve the evaluation accuracy,and the reliability of the control system was analyzed based on the Markov model.The influences of the common cause failure and the failure rate in key components on the reliability and availability of the control system were studied.The impacts of mean time to repair and incomplete repair strategy on the availability of the control system were also investigated.Research results show the key factors that affect system reliability,and a specific method to improve the reliability and availability of the control system was given.This reliability analysis method for the control system could be applied to general all-electric subsea control systems to guide their safe production.展开更多
As the fundamental and key technique to ensure the safe and reliable operation of vital systems,prognostics with an emphasis on the remaining useful life(RUL)prediction has attracted great attention in the last decade...As the fundamental and key technique to ensure the safe and reliable operation of vital systems,prognostics with an emphasis on the remaining useful life(RUL)prediction has attracted great attention in the last decades.In this paper,we briefly discuss the general idea and advances of various prognostics and RUL prediction methods for machinery,mainly including data-driven methods,physics-based methods,hybrid methods,etc.Based on the observations fromthe state of the art,we provide comprehensive discussions on the possible opportunities and challenges of prognostics and RUL prediction of machinery so as to steer the future development.展开更多
Degradation tests are often used to assess the reliability of products with long failure-time or few test units. Much of the previous work on reliability assessment methods has focused on constant-stress degradation t...Degradation tests are often used to assess the reliability of products with long failure-time or few test units. Much of the previous work on reliability assessment methods has focused on constant-stress degradation test( CSDT) and accelerated degradation test( ADT), mainly under the constant, step or progressive stresses. However,in actual testing environments,some stresses are difficult to control and vary with time irregularly,which are quite different from the three stresses mentioned above. In this paper a new approach was presented for reliability assessment with degradation data under irregular time-varying-stress( ITVS).Firstly,the conventional degradation path modeling method was improved by taking into account the influences of the variable stress on the degradation variable. Then,an example was conducted to show the effectiveness of our improved model.展开更多
Background:Mg alloys have attractive properties,including biocompatibility,biodegradability,and ideal mechanical properties.Moreover,Mg alloys are regarded as one of the promising candidates for manufacturing ureteral...Background:Mg alloys have attractive properties,including biocompatibility,biodegradability,and ideal mechanical properties.Moreover,Mg alloys are regarded as one of the promising candidates for manufacturing ureteral stents.This study proposed a multi-objective optimization method based on the Kriging surrogate model,NSGA-III,and finite element analysis to improve the degradation performance of Mg alloy ureteral stents.Methods:The finite element model for the degradation of Mg alloy ureteral stents has been established to compare the degradation performance of the stents under different parameters.Latin hypercube sampling was adopted to generate train sample points in the design space.Meanwhile,the Kriging surrogate model was constructed between strut parameters and stent degradation behavior.The NSGA-III was utilized to determine the optimal solution in the global design space.Results:The optimized stent achieved 5.52degradation uniformity(M),10degradation time(DT),and 4work time(FT).The errors between the Kriging surrogate model and the finite element calculation results were less than 6%.Conclusion:The optimized stent achieved better degradation performance.The degradation behavior of stents was dependent on the design parameters.The multi-objective optimization method based on the Kriging surrogate model and finite element analysis was effective in stent design optimization problems.展开更多
A degradation model with a random failure threshold is presented for the assessment of reliability by the Bayesian approach. This model is different from others in that the degradation process is proceeding under pre-...A degradation model with a random failure threshold is presented for the assessment of reliability by the Bayesian approach. This model is different from others in that the degradation process is proceeding under pre-specified periodical calibrations. And here a random threshold distribution instead of a constant threshold which is difficult to determine in practice is used. The system reliability is defined as the probability that the degradation signals do not exceed the random threshold. Based on the posterior distribution estimates of degradation performance, two models for Bayesian reliability assessments are presented in terms of the degradation performance and the distribution of random failure threshold. The methods proposed in this paper are very useful and practical for multi-stage system with uncertain failure threshold. This study perfects the degradation modeling approaches and plays an important role in the remaining useful life estimation and maintenance decision making.展开更多
In this study,the influence of a plasma electrolytic oxidation(PEO)surface treatment on a medical-grade WE43-based magnesium alloy is examined through an experimental and computational framework that considers the eff...In this study,the influence of a plasma electrolytic oxidation(PEO)surface treatment on a medical-grade WE43-based magnesium alloy is examined through an experimental and computational framework that considers the effects of localised corrosion features and mechanical properties throughout the corrosion process.First,a comprehensive in-vitro immersion study was performed on WE43-based tensile specimens with and without PEO surface modification,which included fully automated spatial reconstruction of the phenomenological features of corrosion through micro-CT scanning,followed by uniaxial tensile testing.Then the experimental data of both unmodified and PEO-modified groups were used to calibrate parameters of a finite element-based surface corrosion model.In-vitro,it was found that the WE43-PEO modified group had a significantly lower corrosion rate and maintained significantly higher mechanical properties than the unmodified.While corrosion rates were~50%lower in the WE43-PEO modified specimens,the local geometric features of corroding surfaces remained similar to the unmodified WE43 group,however evolving after almost the double amount of time.We were also able to quantitatively demonstrate that the PEO surface treatment on magnesium continued to protect samples from corrosion throughout the entire period tested,and not just in the early stages of corrosion.Using the results from the testing framework,the model parameters of the surface-based corrosion model were identified for both groups.This enabled,for the first time,in-silico prediction of the physical features of corrosion and the mechanical performance of both unmodified and PEO modified magnesium specimens.This simulation framework can enable future in-silico design and optimisation of bioabsorbable magnesium devices for load-bearing medical applications.展开更多
基金the National Natural Science Foundation of China(Nos.52469019,52109119,and 52274145)the Chinese Postdoctoral Science Fund Project(No.2022M723408)+1 种基金the Major Project of Guangxi Science and Technology(No.AA23023016)the Technology Project of China Power Engineering Consulting Group Co.,Ltd.(No.DG2-T01-2023)。
文摘The redistribution of three-dimensional(3D)geostress during underground tunnel excavation can easily induce to shear failure along rockmass structural plane,potentially resulting in engineering disasters.However,the current understanding of rockmass shear behavior is mainly based on shear tests under2D stress without lateral stress,the shear fracture under 3D stress is unclear,and the relevant 3D shear fracture theory research is deficient.Therefore,this study conducted true triaxial cyclic loading and unloading shear tests on intact and bedded limestone under different normal stressσnand lateral stressσpto investigate the shear strength,deformation,and failure characteristics.The results indicate that under differentσnandσp,the stress–strain hysteresis loop area gradually increases from nearly zero in the pre-peak stage,becomes most significant in the post-peak stage,and then becomes very small in the residual stage as the number of shear test cycles increases.The shear peak strength and failure surface roughness almost linearly increase with the increase inσn,while they first increase and then gradually decrease asσpincreases,with the maximum increases of 12.9%for strength and 15.1%for roughness.The shear residual strength almost linearly increases withσn,but shows no significant change withσp.Based on the acoustic emission characteristic parameters during the test process,the shear fracture process and microscopic failure mechanism were analyzed.As the shear stressτincreases,the acoustic emission activity,main frequency,and amplitude gradually increase,showing a significant rise during the cycle near the peak strength,while remaining almost unchanged in the residual stage.The true triaxial shear fracture process presents tensile-shear mixture failure characteristics dominated by microscopic tensile failure.Based on the test results,a 3D shear strength criterion considering the lateral stress effect was proposed,and the determination methods and evolution of the shear modulus G,cohesion cjp,friction angleφjp,and dilation angleψjpduring rockmass shear fracture process were studied.Under differentσnandσp,G first rapidly decreases and then tends to stabilize;cjp,φjp,andψjpfirst increase rapidly to the maximum value,then decrease slowly,and finally remain basically unchanged.A 3D shear mechanics model considering the effects of lateral stress and shear parameter degradation was further established,and a corresponding numerical calculation program was developed based on3D discrete element software.The proposed model effectively simulates the shear failure evolution process of rockmass under true triaxial shear test,and is further applied to successfully reveal the failure characteristics of surrounding rocks with structural planes under different combinations of tunnel axis and geostress direction.
基金Supported by the National Key Technology R&D Program (2007BAC20B01)the Fund for Postgraduate of Tarim University (TDZKSS06004)~~
文摘[Objective] This study aimed to solve the mulch plastic film pollution problems in Xinjiang, in order to provide reliable theoretical basis for the research on the degradation mechanism of biodegradable plastic films. [Method] The effect of illumination intensity on the decomposition of decomposable mulching films was investigated through simulating the field condition in laboratory. Regression analysis was employed to fit the processes of film decompositions. [Result] The weight loss ratios of different types of plastic films were closely related with the illumination. There was no sundry produced during the degradation process, but the weight was reduced, indicating that degradation produced gas, thus, ultraviolet rays had destructive effect on mulch plastic films. Different types of plastic films showed significant differences in the degradation speeds, and under the same conditions, the degradation speed of S4# with the induction period of 30 d was the fastest. With the extension of uv illumination time, the degradation became cumulative degradation process. [Conclusion] Under the uv rays, the weight loss ratio and illumination hours is regarded as a positive correlation relationship. The significant inspection shows that the data fitted degradation model can be described by the logistic model of Y = a/(1+b×e -ct), and all the parameters show significant differences (P0.01).
文摘Hot carrier effects of p MOSFETs with different oxide thicknesses are studied in low gate voltage range.All electrical parameters follow a power law relationship with stress time,but degradation slope is dependent on gate voltage.For the devices with thicker oxides,saturated drain current degradation has a close relationship with the product of gate current and electron fluence.For small dimensional devices,saturated drain current degradation has a close relationship with the electron fluence.This degradation model is valid for p MOSFETs with 0 25μm channel length and different gate oxide thicknesses.
基金This paper is funded by National Natural Science Fund (30171205) and National Tenth-year-plan Key Sci&tech Project (2005BA517A04)
文摘Planting trees was used as one of cost-effective measures for desertification control in add and semi-add areas of China. Woodland degradation, however, is becoming an inevitable issue in these areas. In this paper, a typical county, Ejin Holo County, Inner Mongolia, China was selected for its assessment of artificial woodland degradation. A conceptual model for woodland degradation was delineated qualitatively based on field sampling survey, and four model-based indicators as humidity index (HI), vegetation index (NDVI), soil type (ST) and soil erosion modulus (EM) were screened out and used to a GIS-based method for artificial woodland degradation assessment in this semi-add agro-pastoral transitional area. All the indicator layers were overlaid and desertification assessed using simplified equation with equal weights for each indicators. The assessment results showed that in 336. 09 km^2 of total woodland area, 311.35 km^2 woodland were under degradation, and the area for slight, medium, severe degradation was 78.97, 119.73 and 112.65 km^2, respectively. It was suggested that much attention should be paid on woodland improvement and plant species selection, especially shrub species, before revegetation in similar areas.
文摘Distribution-based degradation models (or graphical approach in some literature) occur in a wide range of applications. However, few of existing methods have taken the validation of the built model into consideration. A validation methodology for distribution-based models is proposed in this paper. Since the model can be expressed as consisting of assumptions of model structures and embedded model parameters, the proposed methodology carries out the validation from these two aspects. By using appropriate statistical techniques, the rationality of degradation distributions, suitability of fitted models and validity of degradation models are validated respectively. A new statistical technique based on control limits is also proposed, which can be implemented in the validation of degradation models' validity. The case study on degradation modeling of an actual accelerometer shows that the proposed methodology is an effective solution to the validation problem of distribution-based de qradation models.
文摘The major concern of this article is to address the shortcoming and outgoing effects of the human activities on the landscape patterns and their consequences in the Sefidrood River watershed in Iran. A flow of data includes three inputs; each of them belongs to one part of three zones of a fluvial system. The three parts of the Sefidrood River fluvial system include Zone 1,a sub-watershed as degradation modeling site,Zone 2,Sefidrood Dam as dam site,and Zone 3,17km away from the Sefidrood River path to the Caspian Sea as ending point site. The degradation model in the Zone 1 provides a suitable mean for decision support system to decrease the human impacts on each small district. The maximum number for degradation coefficient belongs to the small district with the highest physiographic density,relatively cumulative activities,and a lower figure for the habitat vulnerability. The human degradation impact were not limited to the upstream. The investigation to the Sefidrood Dam and ending point of the Sefidrood River depicts that sedimentation continues as a significant visual impact in the Sefidrood Dam reservoir and the estuary.
文摘A new method based on resolution degradation model is proposed to improve both spatial and spectral quality of the synthetic images. Some ETM+ panchromatic and multispectral images are used to assess the new method. Its spatial and spectral effects are evaluated by qualitative and quantitative measures and the results are compared with those of IHS, PCA, Brovey, OWT(Orthogonal Wavelet Transform) and RWT(Redundant Wavelet Transform). The results show that the new method can keep almost the same spatial resolution as the panchromatic images, and the spectral effect of the new method is as good as those of wavelet-based methods.
基金supported by the Science and Technology Programs of Gansu Province,China(Nos.21JR1RA248,20JR10RA264)the Young Scholars Science Foundation of Lanzhou Jiaotong University,China(Nos.2020039,2020017)the Special Funds for Guiding Local Scientific and Technological Development by the Central Government,China(No.22ZY1QA005)。
文摘In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testing of a blade.A novel non-linear fatigue damage accumulation model is proposed using the damage assessment theories of composite laminates for the first time.Then,a stiffness degradation model is established based on the correlation of fatigue damage and residual stiffness of the composite laminates.Finally,a stiffness degradation model for the blade is presented based on the full-scale fatigue testing.The scientific rationale of the proposed stiffness model of blade is verified by using full-scale fatigue test data of blade with a total length of 52.5 m.The results indicate that the proposed stiffness degradation model of the blade agrees well with the fatigue testing results of this blade.This work provides a basis for evaluating the fatigue damage and lifetime of blade under cyclic fatigue loading.
基金The National Natural Science Foundation of China(No.51108238)
文摘In order to study the fatigue failure mode and fatigue life laws of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer ( FRP ) sheets, fatigue experiments are carried out, considering two hybrid ratios of 1 : 1 and 2:1 under different stress levels from 0.6 to 0.95. The results show that fractures occur first in carbon fibers or aramid fibers for the specimens with hybrid ratio of 1: 1, namely B1A1 and B1C1, while a fracture occurs first in basalt fibers for the specimens with a hybrid ratio of 2: 1, namely B2A1 and B2C1. The fatigue lives of the hybrid FRP sheets increase with the improvement of the content of carbon fibers or aramid fibers, and the influence of the carbon fibers content improvement to fatigue life is more significant. The fatigue performance of B2A1 is relatively worse, while the fatigue performance of B1C1 and B2C1 is relatively better. Finally, a new fatigue stiffness degradation model with dual variables and double inflection points is presented, which is applicable to both hybrid and normal FRP sheets.
基金supported by the National Defense Foundation of China(71601183)the China Postdoctoral Science Foundation(2017M623415)
文摘For the large number of nonlinear degradation devices existing in a project, the existing methods have not systematically studied the effects of random effect on the remaining lifetime(RL),the accuracy and efficiency of the parameters estimation are not high, and the current degradation state of the target device is not accurately estimated. In this paper, a nonlinear Wiener degradation model with random effect is proposed and the corresponding probability density function(PDF) of the first hitting time(FHT)is deduced. A parameter estimation method based on modified expectation maximum(EM) algorithm is proposed to obtain the estimated value of fixed coefficient and the priori value of random coefficient in the model. The posterior value of the random coefficient and the current degradation state of target device are updated synchronously by the state space model(SSM) and the Kalman filter algorithm. The PDF of RL with random effect is deduced. A simulation example is analyzed to verify that the proposed method has the obvious advantage over the existing methods in parameter estimation error and RL prediction accuracy.
基金This work is supported by Hainan Provincial Natural Science Foundation of China(project number:20166235)project supported by the Education Department of Hainan Province(project number:Hnky2017-57).
文摘Underwater imaging is widely used in ocean,river and lake exploration,but it is affected by properties of water and the optics.In order to solve the lower-resolution underwater image formed by the influence of water and light,the image super-resolution reconstruction technique is applied to the underwater image processing.This paper addresses the problem of generating super-resolution underwater images by convolutional neural network framework technology.We research the degradation model of underwater images,and analyze the lower-resolution factors of underwater images in different situations,and compare different traditional super-resolution image reconstruction algorithms.We further show that the algorithm of super-resolution using deep convolution networks(SRCNN)which applied to super-resolution underwater images achieves good results.
基金supported by a grant from the National Natural Science Foundation of China(No.51208399)Natural Science Foundation of Hubei province of China(No.2018CFB645)Hubei Key Laboratory of Roadway Bridge and Structure Engineering(Wuhan University of Technology)(No.DQJJ201706).
文摘An accelerated decay test and a natural decay test were conducted synchronically to explore the strength degradation of decaying wood members under long-term exposure to natural environment.A natural decay test was carried out to measure the bending strength,compressive strength parallel to grain and modulus of elasticity of the wood members,with 6 groups of specimens decayed in natural environment for 3 to 18 months respectively.To compare with corresponding decay test,in which 6 other groups of specimens were measured under accelerated conditions.The experimental data collected were evaluated by Pearson productmoment for the correlation.The results indicate that the mechanical properties of the accelerated decay were highly correlated with those in natural environment,both of which decreased in the same trend.Under the given test conditions,the mean value of the accelerated decay test data were curve-fitted to achieve the time-dependent degradation model of the bending strength,the compressive strength parallel to grain,as well as the modulus of elasticity.Due to the high correlation,the acceleration shift factors(ASF)of the two tests were derived,where the bending strength of 2.934,the compressive strength parallel to grain of 2.519 and the elastic modulus of 2.346 were employed to formulate the strength degradation models in the long-term natural environment.The results verify that the exponential functionσ=σ0e^(-βt)enables to exactly capture the degradation of the mechanical properties of wood members decayed in natural environment.
基金Supported by the National Natural Science Foundation of China(No.51405424,11673040)the Special Scientific Research Fund of Public Welfare for Quality Inspection(No.201510202)
文摘Hydraulic pumps belong to reliable long-life hydraulic components. The reliability evaluation includes characters such as long test period,high cost,and high power loss and so on. Based on the principle of energy-saving and power recovery,a small sample hydraulic pump reliability test rig is built,and the service life of hydraulic pump is predicted,and then the sampling period of reliability test is optimized. On the basis of considering the performance degradation mechanism of hydraulic pump,the feature information of degradation distribution of hydraulic pump volumetric efficiency during the test is collected,so an optimal degradation path model of feature information is selected from the aspect of fitting accuracy,and pseudo life data are obtained. Then a small sample reliability test of period constrained optimization search strategy for hydraulic pump is constructed to solve the optimization problem of the test sampling period and tightening end threshold,and it is verified that the accuracy of the minimum sampling period by the non-parametric hypothes is tested. Simulation result shows it could possess instructional significance and referenced value for hydraulic pump reliability life evaluation and the test's research and design.
基金supported by the National Natural Science Foundation of China under Grant No.61703224。
文摘The subsea all-electric Christmas tree(XT) is a key equipment in subsea production systems.Once it fails,the marine environment will be seriously polluted.Therefore,strict reliability analysis and measures to improve reliability must be performed before a subsea all-electric XT is launched;such measures are crucial to subsea safe production.A fault-tolerant control system was developed in this paper to improve the reliability of XT.A dual-factor degradation model for electrical control system components was proposed to improve the evaluation accuracy,and the reliability of the control system was analyzed based on the Markov model.The influences of the common cause failure and the failure rate in key components on the reliability and availability of the control system were studied.The impacts of mean time to repair and incomplete repair strategy on the availability of the control system were also investigated.Research results show the key factors that affect system reliability,and a specific method to improve the reliability and availability of the control system was given.This reliability analysis method for the control system could be applied to general all-electric subsea control systems to guide their safe production.
基金The work in Section III was supported by the National Science Foundation of China(NSFC)(Nos.52025056,52005387)the work in Section IV was supported by the National Science Foundation of China(NSFC)(Nos.62233017,62073336).
文摘As the fundamental and key technique to ensure the safe and reliable operation of vital systems,prognostics with an emphasis on the remaining useful life(RUL)prediction has attracted great attention in the last decades.In this paper,we briefly discuss the general idea and advances of various prognostics and RUL prediction methods for machinery,mainly including data-driven methods,physics-based methods,hybrid methods,etc.Based on the observations fromthe state of the art,we provide comprehensive discussions on the possible opportunities and challenges of prognostics and RUL prediction of machinery so as to steer the future development.
基金National Natural Science Foundations of China(Nos.61273041,71271212)
文摘Degradation tests are often used to assess the reliability of products with long failure-time or few test units. Much of the previous work on reliability assessment methods has focused on constant-stress degradation test( CSDT) and accelerated degradation test( ADT), mainly under the constant, step or progressive stresses. However,in actual testing environments,some stresses are difficult to control and vary with time irregularly,which are quite different from the three stresses mentioned above. In this paper a new approach was presented for reliability assessment with degradation data under irregular time-varying-stress( ITVS).Firstly,the conventional degradation path modeling method was improved by taking into account the influences of the variable stress on the degradation variable. Then,an example was conducted to show the effectiveness of our improved model.
基金supported by the National Natural Science Foundation of China(12172034,U20A20390,and 11827803)Beijing Municipal Natural Science Foundation(7212205)+1 种基金the 111 project(B13003)the Fundamental Research Funds for the Central Universities.
文摘Background:Mg alloys have attractive properties,including biocompatibility,biodegradability,and ideal mechanical properties.Moreover,Mg alloys are regarded as one of the promising candidates for manufacturing ureteral stents.This study proposed a multi-objective optimization method based on the Kriging surrogate model,NSGA-III,and finite element analysis to improve the degradation performance of Mg alloy ureteral stents.Methods:The finite element model for the degradation of Mg alloy ureteral stents has been established to compare the degradation performance of the stents under different parameters.Latin hypercube sampling was adopted to generate train sample points in the design space.Meanwhile,the Kriging surrogate model was constructed between strut parameters and stent degradation behavior.The NSGA-III was utilized to determine the optimal solution in the global design space.Results:The optimized stent achieved 5.52degradation uniformity(M),10degradation time(DT),and 4work time(FT).The errors between the Kriging surrogate model and the finite element calculation results were less than 6%.Conclusion:The optimized stent achieved better degradation performance.The degradation behavior of stents was dependent on the design parameters.The multi-objective optimization method based on the Kriging surrogate model and finite element analysis was effective in stent design optimization problems.
基金the National Natural Science Foundation of China(No.71371031)
文摘A degradation model with a random failure threshold is presented for the assessment of reliability by the Bayesian approach. This model is different from others in that the degradation process is proceeding under pre-specified periodical calibrations. And here a random threshold distribution instead of a constant threshold which is difficult to determine in practice is used. The system reliability is defined as the probability that the degradation signals do not exceed the random threshold. Based on the posterior distribution estimates of degradation performance, two models for Bayesian reliability assessments are presented in terms of the degradation performance and the distribution of random failure threshold. The methods proposed in this paper are very useful and practical for multi-stage system with uncertain failure threshold. This study perfects the degradation modeling approaches and plays an important role in the remaining useful life estimation and maintenance decision making.
基金Funding support was also provided by the Irish Research Council(IRC)Government of Ireland Postgraduate Scholarship(GOIPG/2017/2102).
文摘In this study,the influence of a plasma electrolytic oxidation(PEO)surface treatment on a medical-grade WE43-based magnesium alloy is examined through an experimental and computational framework that considers the effects of localised corrosion features and mechanical properties throughout the corrosion process.First,a comprehensive in-vitro immersion study was performed on WE43-based tensile specimens with and without PEO surface modification,which included fully automated spatial reconstruction of the phenomenological features of corrosion through micro-CT scanning,followed by uniaxial tensile testing.Then the experimental data of both unmodified and PEO-modified groups were used to calibrate parameters of a finite element-based surface corrosion model.In-vitro,it was found that the WE43-PEO modified group had a significantly lower corrosion rate and maintained significantly higher mechanical properties than the unmodified.While corrosion rates were~50%lower in the WE43-PEO modified specimens,the local geometric features of corroding surfaces remained similar to the unmodified WE43 group,however evolving after almost the double amount of time.We were also able to quantitatively demonstrate that the PEO surface treatment on magnesium continued to protect samples from corrosion throughout the entire period tested,and not just in the early stages of corrosion.Using the results from the testing framework,the model parameters of the surface-based corrosion model were identified for both groups.This enabled,for the first time,in-silico prediction of the physical features of corrosion and the mechanical performance of both unmodified and PEO modified magnesium specimens.This simulation framework can enable future in-silico design and optimisation of bioabsorbable magnesium devices for load-bearing medical applications.