Let Gi be a closed Lie subgroup of U(n), Ωi be a bounded Gi-invariant domain in Cn which contains 0, and (9(Cn)Gi = C, for i= 1,2. If f : f21 →2 is abiholomorphism, and f(0) = 0, then f is a polynomial mappi...Let Gi be a closed Lie subgroup of U(n), Ωi be a bounded Gi-invariant domain in Cn which contains 0, and (9(Cn)Gi = C, for i= 1,2. If f : f21 →2 is abiholomorphism, and f(0) = 0, then f is a polynomial mapping (see Ning et al. (2017)). In this paper, we provide an upper bound for the degree of such polynomial mappings. It is a natural generalization of the well-known Cartan's theorem.展开更多
Let Gi be closed Lie groups of U (n), Ω i be bounded Gi-invariant domains in C^n which contains 0, and O(C^n)^Gi = C, for i = 1, 2. It is known that if f : Ω 1 → Ω 2 is a proper holomorphic mapping, and f^-1{0} = ...Let Gi be closed Lie groups of U (n), Ω i be bounded Gi-invariant domains in C^n which contains 0, and O(C^n)^Gi = C, for i = 1, 2. It is known that if f : Ω 1 → Ω 2 is a proper holomorphic mapping, and f^-1{0} = {0}, then f is a polynomial mapping. In this paper, we provide an upper bound for the degree of such a polynomial mapping using the multiplicity of f .展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11501058 and 11431013)the Fundamental Research Funds for the Central Universities(Grant No.0208005202035)Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDY-SSW-SYS001)
文摘Let Gi be a closed Lie subgroup of U(n), Ωi be a bounded Gi-invariant domain in Cn which contains 0, and (9(Cn)Gi = C, for i= 1,2. If f : f21 →2 is abiholomorphism, and f(0) = 0, then f is a polynomial mapping (see Ning et al. (2017)). In this paper, we provide an upper bound for the degree of such polynomial mappings. It is a natural generalization of the well-known Cartan's theorem.
基金Supported by National Natural Science Foundation of China(Grant Nos.11801572,11688101)。
文摘Let Gi be closed Lie groups of U (n), Ω i be bounded Gi-invariant domains in C^n which contains 0, and O(C^n)^Gi = C, for i = 1, 2. It is known that if f : Ω 1 → Ω 2 is a proper holomorphic mapping, and f^-1{0} = {0}, then f is a polynomial mapping. In this paper, we provide an upper bound for the degree of such a polynomial mapping using the multiplicity of f .