We investigate the performances of the pairwise correlations(PCs) in different quantum networks consisting of fourwave mixers(FWMs) and beamsplitters(BSs). PCs with quantum correlation in different quantum netwo...We investigate the performances of the pairwise correlations(PCs) in different quantum networks consisting of fourwave mixers(FWMs) and beamsplitters(BSs). PCs with quantum correlation in different quantum networks can be verified by calculating the degree of relative intensity squeezing for any pair of all the output fields. More interestingly, the quantum correlation recovery and enhancement are present in the FWM+BS network and the repulsion effect phenomena(signal(idler)-frequency mode cannot be quantum correlated with the other two idler(signal)-frequency modes simultaneously)between the PCs with quantum correlation are predicted in the FWM + FWM and FWM + FWM + FWM networks. Our results presented here pave the way for the manipulation of the quantum correlation in quantum networks.展开更多
基金Project supported by the National Natural Science Foundation of China(Grants Nos.91436211,11374104,and 10974057)the Natural Science Foundation of Shanghai,China(Grant No.17ZR1442900)+5 种基金the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20130076110011)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning,the Program for New Century Excellent Talents in University,China(Grant No.NCET-10-0383)the Shu Guang Project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation,China(Grant No.11SG26)the Shanghai Pujiang Program,China(Grant No.09PJ1404400)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,National Basic Research Program of China(Grant No.2016YFA0302103)the Program of State Key Laboratory of Advanced 207 Optical Communication Systems and Networks,China(Grant No.2016GZKF0JT003)
文摘We investigate the performances of the pairwise correlations(PCs) in different quantum networks consisting of fourwave mixers(FWMs) and beamsplitters(BSs). PCs with quantum correlation in different quantum networks can be verified by calculating the degree of relative intensity squeezing for any pair of all the output fields. More interestingly, the quantum correlation recovery and enhancement are present in the FWM+BS network and the repulsion effect phenomena(signal(idler)-frequency mode cannot be quantum correlated with the other two idler(signal)-frequency modes simultaneously)between the PCs with quantum correlation are predicted in the FWM + FWM and FWM + FWM + FWM networks. Our results presented here pave the way for the manipulation of the quantum correlation in quantum networks.