A new problem of degree-constrained Euclidean Steiner minimal tree is discussed, which is quite useful in several fields. Although it is slightly different from the traditional degree-constrained minimal spanning tree...A new problem of degree-constrained Euclidean Steiner minimal tree is discussed, which is quite useful in several fields. Although it is slightly different from the traditional degree-constrained minimal spanning tree, it is also NP-hard. Two intelligent algorithms are proposed in an attempt to solve this difficult problem. Series of numerical examples are tested, which demonstrate that the algorithms also work well in practice.展开更多
Spanning tree problems with specialized constraints can be difficult to solve in real-world scenarios,often requiring intricate algorithmic design and exponential time.Recently,there has been growing interest in end-t...Spanning tree problems with specialized constraints can be difficult to solve in real-world scenarios,often requiring intricate algorithmic design and exponential time.Recently,there has been growing interest in end-to-end deep neural networks for solving routing problems.However,such methods typically produce sequences of vertices,which make it difficult to apply them to general combinatorial optimization problems where the solution set consists of edges,as in various spanning tree problems.In this paper,we propose NeuroPrim,a novel framework for solving various spanning tree problems by defining a Markov decision process for general combinatorial optimization problems on graphs.Our approach reduces the action and state space using Prim's algorithm and trains the resulting model using REINFORCE.We apply our framework to three difficult problems on the Euclidean space:the degree-constrained minimum spanning tree problem,the minimum routing cost spanning tree problem and the Steiner tree problem in graphs.Experimental results on literature instances demonstrate that our model outperforms strong heuristics and achieves small optimality gaps of up to 250 vertices.Additionally,we find that our model has strong generalization ability with no significant degradation observed on problem instances as large as 1,000.Our results suggest that our framework can be effective for solving a wide range of combinatorial optimization problems beyond spanning tree problems.展开更多
基金the National Natural Science Foundation of China (70471065)the Shanghai Leading Academic Discipline Project (T0502).
文摘A new problem of degree-constrained Euclidean Steiner minimal tree is discussed, which is quite useful in several fields. Although it is slightly different from the traditional degree-constrained minimal spanning tree, it is also NP-hard. Two intelligent algorithms are proposed in an attempt to solve this difficult problem. Series of numerical examples are tested, which demonstrate that the algorithms also work well in practice.
基金supported by National Key R&D Program of China(Grant No.2021YFA1000403)National Natural Science Foundation of China(Grant No.11991022)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA27000000)the Fundamental Research Funds for the Central Universities。
文摘Spanning tree problems with specialized constraints can be difficult to solve in real-world scenarios,often requiring intricate algorithmic design and exponential time.Recently,there has been growing interest in end-to-end deep neural networks for solving routing problems.However,such methods typically produce sequences of vertices,which make it difficult to apply them to general combinatorial optimization problems where the solution set consists of edges,as in various spanning tree problems.In this paper,we propose NeuroPrim,a novel framework for solving various spanning tree problems by defining a Markov decision process for general combinatorial optimization problems on graphs.Our approach reduces the action and state space using Prim's algorithm and trains the resulting model using REINFORCE.We apply our framework to three difficult problems on the Euclidean space:the degree-constrained minimum spanning tree problem,the minimum routing cost spanning tree problem and the Steiner tree problem in graphs.Experimental results on literature instances demonstrate that our model outperforms strong heuristics and achieves small optimality gaps of up to 250 vertices.Additionally,we find that our model has strong generalization ability with no significant degradation observed on problem instances as large as 1,000.Our results suggest that our framework can be effective for solving a wide range of combinatorial optimization problems beyond spanning tree problems.