期刊文献+
共找到686篇文章
< 1 2 35 >
每页显示 20 50 100
Image Dehazing by Incorporating Markov Random Field with Dark Channel Prior 被引量:3
1
作者 XU Hao TAN Yibo +1 位作者 WANG Wenzong WANG Guoyu 《Journal of Ocean University of China》 SCIE CAS CSCD 2020年第3期551-560,共10页
As one of the most simple and effective single image dehazing methods, the dark channel prior(DCP) algorithm has been widely applied. However, the algorithm does not work for pixels similar to airlight(e.g., snowy gro... As one of the most simple and effective single image dehazing methods, the dark channel prior(DCP) algorithm has been widely applied. However, the algorithm does not work for pixels similar to airlight(e.g., snowy ground or a white wall), resulting in underestimation of the transmittance of some local scenes. To address that problem, we propose an image dehazing method by incorporating Markov random field(MRF) with the DCP. The DCP explicitly represents the input image observation in the MRF model obtained by the transmittance map. The key idea is that the sparsely distributed wrongly estimated transmittance can be corrected by properly characterizing the spatial dependencies between the neighboring pixels of the transmittances that are well estimated and those that are wrongly estimated. To that purpose, the energy function of the MRF model is designed. The estimation of the initial transmittance map is pixel-based using the DCP, and the segmentation on the transmittance map is employed to separate the foreground and background, thereby avoiding the block effect and artifacts at the depth discontinuity. Given the limited number of labels obtained by clustering, the smoothing term in the MRF model can properly smooth the transmittance map without an extra refinement filter. Experimental results obtained by using terrestrial and underwater images are given. 展开更多
关键词 image dehazing dark channel prior Markov random field image segmentation
下载PDF
A Research on Single Image Dehazing Algorithms Based on Dark Channel Prior 被引量:4
2
作者 Ebtesam Mohameed Alharbi Peng Ge Hong Wang 《Journal of Computer and Communications》 2016年第2期47-55,共9页
In the field of computer and machine vision, haze and fog lead to image degradation through various degradation mechanisms including but not limited to contrast attenuation, blurring and pixel distortions. This limits... In the field of computer and machine vision, haze and fog lead to image degradation through various degradation mechanisms including but not limited to contrast attenuation, blurring and pixel distortions. This limits the efficiency of machine vision systems such as video surveillance, target tracking and recognition. Various single image dark channel dehazing algorithms have aimed to tackle the problem of image hazing in a fast and efficient manner. Such algorithms rely upon the dark channel prior theory towards the estimation of the atmospheric light which offers itself as a crucial parameter towards dehazing. This paper studies the state-of-the-art in this area and puts forwards their strengths and weaknesses. Through experiments the efficiencies and shortcomings of these algorithms are shared. This information is essential for researchers and developers in providing a reference for the development of applications and future of the research field. 展开更多
关键词 image dehazing dark channel
下载PDF
Improved dark channel image dehazing method based on Gaussian mixture model 被引量:1
3
作者 GUO Hongguang CHEN Yong 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第1期53-60,共8页
To solve the problem of color distortion after dehazing in the sky region by using the classical dark channel prior method to process the hazy images with large regions of sky,an improved dark channel image dehazing m... To solve the problem of color distortion after dehazing in the sky region by using the classical dark channel prior method to process the hazy images with large regions of sky,an improved dark channel image dehazing method based on Gaussian mixture model is proposed.Firstly,we use the Gaussian mixture model to model the hazy image,and then use the expectation maximization(EM)algorithm to optimize the parameters,so that the hazy image can be divided into the sky region and the non-sky region.Secondly,the sky region is divided into a light haze region,a medium haze region and a heavy haze region according to the different dark channel values to estimate the transmission respectively.Thirdly,the restored image is obtained by combining the atmospheric scattering model.Finally,adaptive local tone mapping for high dynamic range images is used to adjust the brightness of the restored image.The experimental results show that the proposed method can effectively eliminate the color distortion in the sky region,and the restored image is clearer and has better visual effect. 展开更多
关键词 image processing image dehazing Gaussian mixture model expectation maximization(EM)algorithm dark channel theory
下载PDF
Dehazing for Image and Video Using Guided Filter
4
作者 Zheqi Lin Xuansheng Wang 《Open Journal of Applied Sciences》 2012年第4期123-127,共5页
Poor visibility in bad weather, such as haze and fog, is a major problem for many applications of computer vision. Thus, haze removal is highly required for receiving high performance of the vision algorithm. In this ... Poor visibility in bad weather, such as haze and fog, is a major problem for many applications of computer vision. Thus, haze removal is highly required for receiving high performance of the vision algorithm. In this paper, we propose a new fast dehazing method for real-time image and video processing. The transmission map estimated by an improved guided filtering scheme is smooth and respect with depth information of the underlying image. Results demonstrate that the proposed method achieves good dehazeing effect as well as real-time performance. The proposed algorithm, due to its speed and ability to improve visibility, may be used with advantages as pre-processing in many systems ranging from surveillance, intelligent vehicles, to remote sensing. 展开更多
关键词 image dehazing dark channel prior GUIDED FILTER DOWN-SAMPLING
下载PDF
A Novel Method for Night-Time Single Image Dehazing 被引量:1
5
作者 Prince Owusu-Agyeman Xie Wei James Okae 《Journal of Computer and Communications》 2019年第11期76-87,共12页
Images acquired under deprived weather environment are frequently corrupted due to the presence of haze, mist, fog or other aerosols in a form of noise. Haze elimination is essential in computer vision and computation... Images acquired under deprived weather environment are frequently corrupted due to the presence of haze, mist, fog or other aerosols in a form of noise. Haze elimination is essential in computer vision and computational photography applications. Generally, there is the existence of numerous approaches towards haze removal which are mostly meant for hazy images under daytime environments. Although the potency of these proposed approaches has been comprehensively established on daylight hazy images. However these procedures inherit significant limitations on images influenced by night-time hazy environments. Since night time haze removal dehazing remains an ill-posed problem, we proposed a novel method for night-time single image dehazing which is efficient under night-time environments. The proposed scheme is a dark channel-based local image dehazing procedure that locally estimates the atmospheric intensity for each selected mask on a corrupted image independently and not the entire image. This is done in order to overcome the challenge of night-scenes that are exposed to multiple/artificial lights source and spatially non-uniform environmental illumination. We performed an adaptive filtering on the combined dehazed masks to improve the degraded image. We validated the supremacy of the proposed approach in terms of speed and robustness through computer-based experiments. Conclusively, we displayed comparison results with state-of-the-art and extensively emphasized the comparative advantage of our scheme. 展开更多
关键词 NIGHTTIME HAZE Removal dark channel prior image Enhancement Machine VISION
下载PDF
Image dehazing based on dark channel prior and brightness enhancement for agricultural monitoring
6
作者 Xiuyuan Wang Chenghai Yang +1 位作者 Jian Zhang Huaibo Song 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第2期170-176,共7页
Obtaining clear and true images is a basic requirement for agricultural monitoring.However,under the influence of fog,haze and other adverse weather conditions,captured images are usually blurred and distorted,resulti... Obtaining clear and true images is a basic requirement for agricultural monitoring.However,under the influence of fog,haze and other adverse weather conditions,captured images are usually blurred and distorted,resulting in the difficulty of target extraction.Traditional image dehazing methods based on image enhancement technology can cause the loss of image information and image distortion.In order to address the above-mentioned problems caused by traditional image dehazing methods,an improved image dehazing method based on dark channel prior(DCP)was proposed.By enhancing the brightness of the hazed image and processing the sky area,the dim and un-natural problems caused by traditional image dehazing algorithms were resolved.Ten different test groups were selected from different weather conditions to verify the effectiveness of the proposed algorithm,and the algorithm was compared with the commonly-used histogram equalization algorithm and the DCP method.Three image evaluation indicators including mean square error(MSE),peak signal to noise ratio(PSNR),and entropy were used to evaluate the dehazing performance.Results showed that the PSNR and entropy with the proposed method increased by 21.81%and 5.71%,and MSE decreased by 40.07%compared with the original DCP method.It performed much better than the histogram equalization dehazing method with an increase of PSNR by 38.95%and entropy by 2.04%and a decrease of MSE by 84.78%.The results from this study can provide a reference for agricultural field monitoring. 展开更多
关键词 agricultural monitoring image dehazing monitoring image dark channel prior(DCP) brightness promoting
原文传递
Single Image Dehazing with V-transform and Dark Channel Prior 被引量:5
7
作者 Xiaochun WANG Xiangdong SUN Ruixia SONG 《Journal of Systems Science and Information》 CSCD 2020年第2期185-194,共10页
Single image dehazing algorithm based on the dark channel prior may cause block effect and color distortion.To improve these limitations,this paper proposes a single image dehazing algorithm based on the V-transform a... Single image dehazing algorithm based on the dark channel prior may cause block effect and color distortion.To improve these limitations,this paper proposes a single image dehazing algorithm based on the V-transform and the dark channel prior,in which a hazy RGB image is converted into the HSI color space,and each component H,I and S is processed separately.The hue component H remains unchanged,the saturation component S is stretched after being denoised by a median filter.In the procession of intensity component,a quad-tree algorithm is presented to estimate the atmospheric light,the dark channel prior and the V-transform are used to estimate the transmission map.To reduce the computational complexity,the intensity component I is decomposed by the V-transformfirst,coarse transmission map is then estimated by applying the dark channel prior on the low frequency reconstruction image,and the guided filter is finally employed to refine the coarse transmission map.For images with sky regions,the haze removal effectiveness can be greatly improved by just increasing the minimum value of the transmission map.The proposed algorithm has low time complexity and performs well on a wide variety of images.The recovered images have more nature color and less color distortion compared with some state-of-the-art methods. 展开更多
关键词 dark channel prior image HAZE removal HSI COLOR space quad-tree V-transform
原文传递
Improved single image dehazing using dark channel prior
8
作者 Zhizhong Fu Yanjing Yang +3 位作者 Chang Shu Yuan Li Honggang Wu Jin Xu 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2015年第5期1070-1079,共10页
An improved single image dehazing method based on dark channel prior and wavelet transform is proposed. This proposed method employs wavelet transform and guided filter instead of the soft matting procedure to estimat... An improved single image dehazing method based on dark channel prior and wavelet transform is proposed. This proposed method employs wavelet transform and guided filter instead of the soft matting procedure to estimate and refine the depth map of haze images. Moreover, a contrast enhancement method based on just noticeable difference(JND) and quadratic function is adopted to enhance the contrast for the dehazed image, since the scene radiance is usually not as bright as the atmospheric light,and the dehazed image looks dim. The experimental results show that the proposed approach can effectively enhance the haze image and is well suitable for implementing on the surveillance and obstacle detection systems. 展开更多
关键词 single image haze removal dark channel prior guided filter wavelet transform contrast enhancement quadratic function
原文传递
Dark channel prior based blurred image restoration method using total variation and morphology 被引量:1
9
作者 Yibing Li Qiang Fu +1 位作者 Fang Ye Hayaru Shouno 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期359-366,共8页
The blurred image restoration method can dramatically highlight the image details and enhance the global contrast, which is of benefit to improvement of the visual effect during practical ap- plications. This paper is... The blurred image restoration method can dramatically highlight the image details and enhance the global contrast, which is of benefit to improvement of the visual effect during practical ap- plications. This paper is based on the dark channel prior principle and aims at the prior information absent blurred image degradation situation. A lot of improvements have been made to estimate the transmission map of blurred images. Since the dark channel prior principle can effectively restore the blurred image at the cost of a large amount of computation, the total variation (TV) and image morphology transform (specifically top-hat transform and bottom- hat transform) have been introduced into the improved method. Compared with original transmission map estimation methods, the proposed method features both simplicity and accuracy. The es- timated transmission map together with the element can restore the image. Simulation results show that this method could inhibit the ill-posed problem during image restoration, meanwhile it can greatly improve the image quality and definition. 展开更多
关键词 image restoration dark channel prior total variation (TV) morphology transform
下载PDF
Single foggy image restoration based on spatial correlation analysis of dark channel prior 被引量:1
10
作者 Yan Tian Dong Xia Yiping Xu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第4期688-696,共9页
Focusing on the degradation of foggy images, a restora- tion approach from a single image based on spatial correlation of dark channel prior is proposed. Firstly, the transmission of each pixel is estimated by the spa... Focusing on the degradation of foggy images, a restora- tion approach from a single image based on spatial correlation of dark channel prior is proposed. Firstly, the transmission of each pixel is estimated by the spatial correlation of dark channel prior. Secondly, a degradation model is utilized to restore the foggy image. Thirdly, the final recovered image, with enhanced contrast, is obtained by performing a post-processing technique based on just-noticeable difference. Experimental results demonstrate that the information of a foggy image can be recovered perfectly by the proposed method, even in the case of the abrupt depth changing scene. 展开更多
关键词 foggy image image restoration dark channel prior spatial correlation.
下载PDF
Single-image night haze removal based on color channel transfer and estimation of spatial variation in atmospheric light
11
作者 Shu-yun Liu Qun Hao +6 位作者 Yu-tong Zhang Feng Gao Hai-ping Song Yu-tong Jiang Ying-sheng Wang Xiao-ying Cui Kun Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期134-151,共18页
The visible-light imaging system used in military equipment is often subjected to severe weather conditions, such as fog, haze, and smoke, under complex lighting conditions at night that significantly degrade the acqu... The visible-light imaging system used in military equipment is often subjected to severe weather conditions, such as fog, haze, and smoke, under complex lighting conditions at night that significantly degrade the acquired images. Currently available image defogging methods are mostly suitable for environments with natural light in the daytime, but the clarity of images captured under complex lighting conditions and spatial changes in the presence of fog at night is not satisfactory. This study proposes an algorithm to remove night fog from single images based on an analysis of the statistical characteristics of images in scenes involving night fog. Color channel transfer is designed to compensate for the high attenuation channel of foggy images acquired at night. The distribution of transmittance is estimated by the deep convolutional network DehazeNet, and the spatial variation of atmospheric light is estimated in a point-by-point manner according to the maximum reflection prior to recover the clear image. The results of experiments show that the proposed method can compensate for the high attenuation channel of foggy images at night, remove the effect of glow from a multi-color and non-uniform ambient source of light, and improve the adaptability and visual effect of the removal of night fog from images compared with the conventional method. 展开更多
关键词 dehazing image captured at night Chromaticity fusion correction Color channel transfer Spatial change-based atmospheric light ESTIMATION DehazeNet
下载PDF
CP-Net:Channel Attention and Pixel Attention Network for Single Image Dehazing
12
作者 Shunan Gao Jinghua Zhu Yan Yang 《国际计算机前沿大会会议论文集》 2020年第1期577-590,共14页
An end-to-end channel attention and pixel attention network(CP-Net)is proposed to produce dehazed image directly in the paper.The CP-Net structure contains three critical components.Firstly,the double attention(DA)mod... An end-to-end channel attention and pixel attention network(CP-Net)is proposed to produce dehazed image directly in the paper.The CP-Net structure contains three critical components.Firstly,the double attention(DA)module consisting of channel attention(CA)and pixel attention(PA).Different channel features contain different levels of important information,and CA can give more weight to relevant information,so the network can learn more useful information.Meanwhile,haze is unevenly distributed on different pixels,and PA is able to filter out haze with varying weights for different pixels.It sums the outputs of the two attention modules to improve further feature representation which contributes to better dehazing result.Secondly,local residual learning and DA module constitute another important component,namely basic block structure.Local residual learning can transfer the feature information in the shallow part of the network to the deep part of the network through multiple local residual connections and enhance the expressive ability of CP-Net.Thirdly,CP-Net mainly uses its core component,DA module,to automatically assign different weights to different features to achieve satisfactory dehazing effect.The experiment results on synthetic datasets and real hazy images indicate that many state-of-the-art single image dehazing methods have been surpassed by the CP-Net both quantitatively and qualitatively. 展开更多
关键词 image dehazing channel attention and pixel attention Residual learning
原文传递
Fog removal and enhancement method for UAV aerial images based on dark channel prior 被引量:1
13
作者 Fei Xia Hu Song Haoxiang Dou 《Journal of Control and Decision》 EI 2023年第2期188-197,共10页
The existing UAV aerial image de-fog methods have low image contrast after de-fog,the difference between light and dark image is not obvious,leading to poor de-fog effect.Therefore,an aerial image de-fog enhancement m... The existing UAV aerial image de-fog methods have low image contrast after de-fog,the difference between light and dark image is not obvious,leading to poor de-fog effect.Therefore,an aerial image de-fog enhancement method based on dark channel a priori is proposed.The image variance and absolute gradient mean are combined to get the weight coefficients,and the edge pixels are smoothed by using the multiple decomposition form.The image intensity is calculated and the noise is reduced.A convolution neural network is introduced to calculate the atmospheric transmittance in haze.Based on this,dark channel prior algorithm is used to enhance the light and shade difference of aerial photography image and realise the de-fog enhancement of aerial photography image.To verify the performance of the proposed method,simulation experiments are designed which were compared with the existing methods results in better fog-removing effect,higher contrast and shorter time. 展开更多
关键词 dark channel prior unmanned aerial vehicle(UAV) aerial image fog enhancement halo artefact image denoising
原文传递
一种基于暗亮通道分割融合的低照度环境图像去尘雾及增强方法 被引量:1
14
作者 樊红卫 张超 +3 位作者 曹现刚 刘金鹏 张旭辉 赵寒 《煤炭学报》 EI CAS CSCD 北大核心 2024年第4期2167-2178,共12页
受煤矿井下粉尘、水雾和低照度环境影响,对皮带运输系统的监测图像精准识别极为困难。针对现有去尘雾方法的图像处理结果和效率欠佳的问题,提出一种基于暗亮通道分割融合的低照度环境图像去尘雾及增强方法。首先利用阈值分割结合伽马变... 受煤矿井下粉尘、水雾和低照度环境影响,对皮带运输系统的监测图像精准识别极为困难。针对现有去尘雾方法的图像处理结果和效率欠佳的问题,提出一种基于暗亮通道分割融合的低照度环境图像去尘雾及增强方法。首先利用阈值分割结合伽马变换修正通道差,解决因低照度环境影响导致的尘雾浓度较大区域与其他区域间像素值差异不明显的问题,修正后通过引导尘雾图像做引导滤波得到更加符合实际情况的全局大气光强;然后为解决暗通道先验在尘雾浓度较大区域失效问题,引入亮通道先验进行补充,使用通道分量来辅助暗通道及亮通道透射率融合,避免因多次分割而导致的边缘像素归属问题;最后将去雾后RGB图像转至HSV空间,对亮度分量进行直方图均衡化并将均衡化前后的亮度分量进行加权融合,采用客观指标评价,选择最优聚合权值进行聚合,同时考虑去雾过程中饱和度损失和亮度分量与饱和度分量间的相关性提出饱和度自适应矫正函数,对图像饱和度进行矫正,色调分量保持不变,随后将图像转回至RGB空间,得到亮度适中、信息保留丰富和色彩鲜艳的图像;为验证所提方法的有效性,采用主观视觉、客观指标和目标检测精度及置信度进行算法对比,实验结果表明所提方法在上述4个指标上均优于被对比算法,其图像细节保留丰富,图像视觉观感更佳。 展开更多
关键词 低照度 暗通道 亮通道 分割融合 图像去雾 图像增强
下载PDF
多尺度融合图像去雾方法
15
作者 邱云明 章生冬 +1 位作者 范恩 侯能 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2024年第5期594-601,共8页
图像去雾能够使视觉系统适应不同的天气状况.为克服传统暗通道先验方法会在物体边界区域形成光晕效应的问题,提出一种用于估计有雾图像透射率的多尺度融合算法.应用不同大小的最小值半径得到多尺度的透射率估计值,再根据局部区域像素具... 图像去雾能够使视觉系统适应不同的天气状况.为克服传统暗通道先验方法会在物体边界区域形成光晕效应的问题,提出一种用于估计有雾图像透射率的多尺度融合算法.应用不同大小的最小值半径得到多尺度的透射率估计值,再根据局部区域像素具有类似的透射率值这一现象,对透射率图进行多尺度融合,选择小透射图区域中最亮的像素来计算大气光值,最后使用大气散射模型恢复清晰图像.分别从视觉效果和量化指标两个方面,对比所提方法与传统的基于先验和基于深度学习的去雾方法在进行图像去雾后的效果.结果发现,针对4种典型场景,采用本研究算法去雾后的重构图像能够保留更多的结构、细节和颜色信息,避免了过分增强和边缘部分的雾残留问题,视觉效果均优于对比方法;量化指标峰值信噪比和结构相似性均高于对比方法,分别为15.65和0.78. 展开更多
关键词 图像处理 图像去雾 暗通道 多尺度 融合方法 透视率图 图像增强 图像恢复
下载PDF
含明亮区域的无人机遥感定位图像去雾方法
16
作者 黄莺 胡凯益 +2 位作者 李战一 黄鹤 茹锋 《火力与指挥控制》 CSCD 北大核心 2024年第5期130-136,144,共8页
针对传统DCP去雾算法处理无人机遥感定位含雾图像时,天空或白色等明亮区域颜色易发生失真,图像整体对比度降低等问题,提出了一种自适应阈值分割的DCP去雾方法。利用灰度图像I_(gray)(x)求取图像明亮与非明亮区域的自适应阈值ThrB;根据... 针对传统DCP去雾算法处理无人机遥感定位含雾图像时,天空或白色等明亮区域颜色易发生失真,图像整体对比度降低等问题,提出了一种自适应阈值分割的DCP去雾方法。利用灰度图像I_(gray)(x)求取图像明亮与非明亮区域的自适应阈值ThrB;根据自适应阈值ThrB将明亮区与非明亮区分割,并设计自适应修正函数M;优化由暗通道图像生成的大气耗散函数粗估计,利用双边滤波再次细化透射率,完成图像去雾复原。实验结果表明:提出方法在处理天空或反光较强的明亮区域时,能够有效避免复原后的颜色失真等问题,进一步改善遥感图像地面景物区域的处理效果,复原后整幅遥感图像的色彩饱和度和对比度明显提高,主观视觉效果有一定改善,且PSNR、FC、SSIM和CR等客观参数均有提升,有利于后续遥感定位图像分析。 展开更多
关键词 图像处理 暗通道理论 去雾 遥感 定位
下载PDF
基于峰值直方图均衡化的车位图像增强
17
作者 苗作华 刘代文 +2 位作者 尹东 李诒雯 陈澳光 《激光杂志》 CAS 北大核心 2024年第7期168-173,共6页
车位增强算法作为自动泊车的重要组成部分,其增强结果直接影响车位线提取效果。基于此,引入了暗通道作为低频分量进行自适应对比度增强,基于多组低对比度车位图像数据,讨论了多种低对比度增强算法的适用性,针对增强算法部分区域产生的... 车位增强算法作为自动泊车的重要组成部分,其增强结果直接影响车位线提取效果。基于此,引入了暗通道作为低频分量进行自适应对比度增强,基于多组低对比度车位图像数据,讨论了多种低对比度增强算法的适用性,针对增强算法部分区域产生的车位增强不足与过曝现象导致降低车位线提取的完整性与精度下降的问题,提出峰值直方图均衡化的快速增强算法,结合了PSNR、结构相似性、平均亮度和信息熵等作为客观评价指标,利用了霍夫直线检测统计算法增强结果的车位提取精度,并进行了验证。研究结果表明:本算法能够减少环境信息干扰,保留更多纹理细节,提升全局图像亮度与对比度,其在低照度环境下仍然具有出色的鲁棒性。本算法车位线提取精度超过90%,算法运行时间仅为37.18 ms,能够为低对比度场景下的自动泊车系统提供方法指导。 展开更多
关键词 低对比度图像 改进的自适应对比度增强 暗通道 峰值直方图均衡化
下载PDF
基于CLAHE-PCA的矿井低照度图像增强研究
18
作者 苗作华 张立 +5 位作者 徐厚友 王梦婷 段宏山 白宇宸 高健铭 周浩 《金属矿山》 CAS 北大核心 2024年第6期165-172,共8页
地下矿山巷道环境往往面临光线不足,难以通过获取其暗通道图像判断岩体剥落等异常情况。针对矿井巷道暗通道图像对比度低的问题,提出了一种基于CLAHE-PCA的图像增强算法。首先使用CLAHE算法将获取的矿井巷道原始暗通道图像做对比度增强... 地下矿山巷道环境往往面临光线不足,难以通过获取其暗通道图像判断岩体剥落等异常情况。针对矿井巷道暗通道图像对比度低的问题,提出了一种基于CLAHE-PCA的图像增强算法。首先使用CLAHE算法将获取的矿井巷道原始暗通道图像做对比度增强处理,然后使用自适应Gamma算法对亮度低的图像予以增加对比度矫正;将矫正后获得的灰度图转为RGB图像,通过PCA对其进行平滑处理,以便更多地还原暗通道图像的细节。以峰值信噪比、结构相似性、平均梯度和信息熵等作为评价指标,对试验结果进行验证。结果表明:该方法能够有效处理低对比度的矿井巷道图像,处理后的图像结构相似性达到93%,鲁棒性强,同时能够更多地还原图像的细节。 展开更多
关键词 低照度图像 暗通道 图像增强 限制对比度的自适应直方图均衡化 PCA
下载PDF
基于改进暗通道先验的海上低照度图像增强算法
19
作者 苏丽 崔世豪 张雯 《海军航空大学学报》 2024年第5期576-586,共11页
针对基于暗通道先验的低照度图像增强算法在处理极端海上低光环境下图像时会存在光晕效应、色彩失真的问题,提出了1种基于暗通道先验的自适应海上低照度图像增强算法。首先,通过选取图像类型划分指标,将数据集中的图像分类,并通过Otsu... 针对基于暗通道先验的低照度图像增强算法在处理极端海上低光环境下图像时会存在光晕效应、色彩失真的问题,提出了1种基于暗通道先验的自适应海上低照度图像增强算法。首先,通过选取图像类型划分指标,将数据集中的图像分类,并通过Otsu方法和图像直方图分布,获取图像的区域划分阈值,将图像进行划分得到局部区域图,分析各类图像的局部区域图之间的关系;最后,通过对不同的局部区域图采用不同的改进暗通道先验算法进行处理,将1个图像中的2个增强后局部区域图合并,得到整张图像的增强结果,并对增强后图像进行主客观的图像质量评价。实验结果表明,该算法解决了现有算法在处理极端海上低照度图像时存在光晕效应和色彩失真的问题,并使不同环境下的海上低照度图像都能达到较好的恢复效果。 展开更多
关键词 暗通道先验 海上低照度图像增强 自适应 OTSU 图像质量评价
下载PDF
一种改进的暗通道先验低光照图像增强算法
20
作者 赵玲娜 《佳木斯大学学报(自然科学版)》 CAS 2024年第8期42-44,41,共4页
针对低光照图像增强算法常见的亮度不均匀、色彩失真、图像噪点较多、细节不清晰等问题,提出了一种改进的暗通道先验低光照图像增强算法。该方法对像素值取反后的低光照图像,首先采用引导滤波,解决图像在运用最小值滤波计算暗通道时引... 针对低光照图像增强算法常见的亮度不均匀、色彩失真、图像噪点较多、细节不清晰等问题,提出了一种改进的暗通道先验低光照图像增强算法。该方法对像素值取反后的低光照图像,首先采用引导滤波,解决图像在运用最小值滤波计算暗通道时引起的块效应,其次在剔除像素为255的纯白色点干扰后进行大气光值的计算,然后引入细化系数进行透射率自适应修正使透射率更加平滑,最后采用非局部平均滤波进行噪声去除。实验表明,所提出的算法使图像的亮度增强合适,细节清晰,在Low-Light弱光图像数据集上测试图片,所得到的SSIM值比对比算法提升20.5%,PSNR值提升19.9%,无论从主观感受,还是客观评价指标等各方面,都有优化。 展开更多
关键词 低光照图像增强 暗通道先验 透射率自适应修正 非局部平均滤波
下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部