期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Time-resolved multiomics analysis of the genetic regulation of maize kernel moisture 被引量:2
1
作者 Jianzhou Qu Shutu Xu +5 位作者 Xiaonan Gou Hao Zhang Qian Cheng Xiaoyue Wang Chuang Ma Jiquan Xue 《The Crop Journal》 SCIE CSCD 2023年第1期247-257,共11页
Maize kernel moisture content(KMC)at harvest greatly affects mechanical harvesting,transport and storage.KMC is correlated with kernel dehydration rate(KDR)before and after physiological maturity.KMC and KDR are compl... Maize kernel moisture content(KMC)at harvest greatly affects mechanical harvesting,transport and storage.KMC is correlated with kernel dehydration rate(KDR)before and after physiological maturity.KMC and KDR are complex traits governed by multiple quantitative trait loci(QTL).Their genetic architecture is incompletely understood.We used a multiomics integration approach with an association panel to identify genes influencing KMC and KDR.A genome-wide association study using time-series KMC data from 7 to 70 days after pollination and their transformed KDR data revealed respectively 98and 279 loci significantly associated with KMC and KDR.Time-series transcriptome and proteome datasets were generated to construct KMC correlation networks,from which respectively 3111 and 759 module genes and proteins were identified as highly associated with KMC.Integrating multiomics analysis,several promising candidate genes for KMC and KDR,including Zm00001d047799 and Zm00001d035920,were identified.Further mutant experiments showed that Zm00001d047799,a gene encoding heat shock 70 kDa protein 5,reduced KMC in the late stage of kernel development.Our study provides resources for the identification of candidate genes influencing maize KMC and KDR,shedding light on the genetic architecture of dynamic changes in maize KMC. 展开更多
关键词 MAIZE Kernel moisture Kernel dehydration rate GWAS Multiomics
下载PDF
Phase states of moisture content in different maize kernel types
2
作者 Na Li Tongyu Xu Nan Hao 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2023年第1期250-259,共10页
Accurate determination of the moisture content in maize kernels conduces to screen maize germplasm materials with efficient dehydration.Low-field nuclear magnetic resonance(LF-NMR)single-kernel non-destructive testing... Accurate determination of the moisture content in maize kernels conduces to screen maize germplasm materials with efficient dehydration.Low-field nuclear magnetic resonance(LF-NMR)single-kernel non-destructive testing technology was used to determine the moisture content at different phase states in the kernels for selected types of maize.The NMR T 2 relaxation inversion spectrum was monitored in maize kernels to determine the variation in the moisture content in different phase states with time.The total water and free water peaked at the filling stage of the maize kernels and then declined to a minimum at physiological maturity.The semi-bound water generally increased to a long-lasting peak in the dough stage and then declined.The bound water increased from kernel formation to maturity and then remained stable.The contents of total water,free water,semi-bound water,and bound water had significant differences among kernel types but not among varieties of the same type.The contents of semi-bound water and free water were linearly correlated with the dehydration rates of the kernels.The results of this study can provide a means for creating new germplasm materials. 展开更多
关键词 maize(Zea mays L.) LF-NMR moisture phase state kernel type dehydration rate
原文传递
Development and application of polymetric surfactant emulsification and viscosity reduction system 被引量:4
3
作者 Dongdong Wang Nanjun Lai 《Petroleum》 CSCD 2019年第4期402-406,共5页
Compounding polymer AP-P4 with high viscosity-reducing Gemini Surfactant HD,which is used as an emulsifier viscosity reduce,to improve the stability of the O/W emulsion while the viscosity reduction rate is kept.A pol... Compounding polymer AP-P4 with high viscosity-reducing Gemini Surfactant HD,which is used as an emulsifier viscosity reduce,to improve the stability of the O/W emulsion while the viscosity reduction rate is kept.A polymeric surfactant emulsification and viscosity reduction system capable of forming a relatively stable O/W emulsion of heavy oil(0.5%HD+0.1%AP-P4)is then compounded.The system has been characterized as a high viscosity reduction rate and high stability.Meanwhile,the production liquid does not need to be added with a demulsifier and only needs to be heated to 70°C to achieve effective demulsification.The influencing factors of the performance of the polymetric surfactant emulsification and viscosity reduction system were studied.When the oil-water ratio was 70:30 and 60:40,the viscosity reduction rate was 97.47%and 99.09%,respectively;after 15 h at 30°C,the dehydration rates were 95.8%and 99.2%,respectively.The dehydration rate after 15 h at 70°C was 98.1%and 99.4%,respectively;at 30∼50°C,the water phase temperature has a greater impact on the viscosity;at 60°C,70°C,the water phase temperature has little effect on the viscosity;as the temperature of the aqueous phase increased,the stability of the emulsion deteriorated.When the aqueous phase temperature was 30°C,50°C and 70°C,the dehydration rates of the emulsion after 15 h were 95.8%,96.7%and 98.1%,respectively;As the degree of mineralization increases,the viscosity reduction rate decreases,and the stability of the emulsion deteriorates.The system has been used in field test for 2 injection wells,and the production rate of the two wells increased with a peak value of 25 m3/d and 20 t/d,respectively. 展开更多
关键词 Heavy oil Wellbore viscosity reduction EMULSIFICATION POLYMER Dehydration rate
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部