Various ZSM-5 zeolites modified with alkali metals (Li, Na, K, Rb, and Cs) were prepared using ion exchange. The catalysts were used to enhance the catalytic dehydration of lactic acid (LA) to acrylic acid (AA)....Various ZSM-5 zeolites modified with alkali metals (Li, Na, K, Rb, and Cs) were prepared using ion exchange. The catalysts were used to enhance the catalytic dehydration of lactic acid (LA) to acrylic acid (AA). The effects of cationic species on the structures and surface acid-base distributions of the ZSM-5 zeolites were investigated. The important factors that affect the catalytic performance were also identified. The modified ZSM-5 catalysts were characterized using X-ray diffraction, tempera- ture-programmed desorptions of NH3 and CO2, pyridine adsorption spectroscopy, and N2 adsorption to determine the crystal phase structures, surface acidities and basicities, nature of acid sites, specific surface areas, and pore volumes. The results show that the acid-base sites that are adjusted by alkali-metal species, particularly weak acid-base sites, are mainly responsible for the formation of AA. The KZSM-5 catalyst, in particular, significantly improved LA conversion and AA selectivity because of the synergistic effect of weak acid-base sites. The reaction was conducted at different reaction temperatures and liquid hourly space velocities (LHSVs) to understand the catalyst selectivity for AA and trends in byproduct formation. Approximately 98% LA conversion and 77% AA selectivity were achieved using the KZSM-5 catalyst under the optimum conditions (40 wt% LA aqueous solution, 365 ℃, and LHSV 2 h-1).展开更多
Formic acid (HCOOH) decomposition at Pt film electrode has been studied by electrochem- ical in situ FTIR spectroscopy under attenuated-total-reflection configuration, in order to clarify whether bridge-bonded forma...Formic acid (HCOOH) decomposition at Pt film electrode has been studied by electrochem- ical in situ FTIR spectroscopy under attenuated-total-reflection configuration, in order to clarify whether bridge-bonded formate (HCOOD) is the reactive intermediate for COad for-mation from HCOOH molecules. When switching from HCOOH-free solution to HCOOH- containing solution at constant potential (E=0.4 V vs. RHE), we found that immediately upon solution switch COad formation rate is the highest, while surface coverage of formate is zero, then after COad formation rate decreases, while formate coverage reaches a steady state coverage quickly within ca. 1 s. Potential step experiment from E=0.75 V to 0.35 V, reveals that formate band intensity drops immediately right after the potential step, while the COad signal develops slowly with time. Both facts indicate that formate is not the reactive intermediate for formic acid dehydration to CO.展开更多
In this paper, the effect of acidity of zeolites with FER framework was studied in the methanol dehydration to dimethyl ether reaction, by comparing catalysts with different Si/Al ratios(namely 8, 30 and60). The aim o...In this paper, the effect of acidity of zeolites with FER framework was studied in the methanol dehydration to dimethyl ether reaction, by comparing catalysts with different Si/Al ratios(namely 8, 30 and60). The aim of this work was to investigate how the acid sites concentration, strength, distribution and typology(Br?nsted and Lewis) affect methanol conversion, DME selectivity and coke formation. It was found that the aluminium content affects slightly acid sites strength whilst a relevant effect on acid sites concentration and distribution(Br?nsted/Lewis) was observed as 24% of Lewis sites were found on Alrichest samples, whilst less than 10% of Lewis acid sites were observed on FER at higher Si/Al ratio. All the investigated catalyst samples showed a selectivity toward DME always greater than 0.9 and samples with the lowest Si/Al ratio exhibit the best performances in terms of methanol conversion, approaching the theoretical equilibrium value(around 0.85) at temperatures below 200 °C. Turnover-frequency analysis suggests that this result seems to be related not only to the higher amount of acid sites but also that the presence of Lewis acid sites may play a significant role in converting methanol. On the other hand, the presence of Lewis acid sites, combined with a high acidity, promote the formation of by-products(mainly methane) and coke deposition during the reaction. As final evidence, all the investigated catalysts exhibit very high resistance to deactivation by coke deposition, over 60 h continuous test, and a GC–MS analysis of the coke deposited on the catalyst surface reveals tetra-methyl benzene as main component.展开更多
In order to concentrate the diluted sulfuric acid from the titanium dioxide(TiO2)production of sulphate process,a new concentration process was proposed by coupling chemical dehydration and multi-effect evaporation.Th...In order to concentrate the diluted sulfuric acid from the titanium dioxide(TiO2)production of sulphate process,a new concentration process was proposed by coupling chemical dehydration and multi-effect evaporation.The ferrous sulfate monohydrate(FeSO4·H2O),as the dehydrant,was added to the diluted sulfuric acid to form ferrous sulfate heptahydrate(FeSO4·7H2O)according to the H2SO4-FeSO4-H2O phase diagrams,which partially removes the water.This process was named as Chemical Dehydration Process.The residual water was further removed by two-effect evaporation and finally 70 wt%sulfuric acid was obtained.The FeSO4·H2O can be regenerated through drying and dehydration of FeSO4·7H2O.The results show that FeSO4·H2O is the most suitable dehydrant,the optimal reaction time of chemical dehydration process is 30 min,and low temperature is favorable for the dehydration reaction.45.17%of the entire removed water can be removed by chemical dehydration from the diluted sulfuric acid.This chemical dehydration process is also energy efficient with 24.76%saving compared with the direct evaporation process.Furthermore,51.21%of the FeSO4 dissolved originally in the diluted sulfuric acid are precipitated out during the chemical dehydration,which greatly reduces the solid precipitation and effectively alleviates the scaling in the subsequent multi-effect evaporation process.展开更多
Dynamic model for dehydration process of industrial purified terephthalic acid solvent is investigated to understand and characterize the process.A temperature differential expression is presented,which ensures the eq...Dynamic model for dehydration process of industrial purified terephthalic acid solvent is investigated to understand and characterize the process.A temperature differential expression is presented,which ensures the equation to convergence and short computation time.The model is used to study the dynamic behavior of an azeotropic distillation column separating acetic acid and water using n-butyl acetate as the entrainer.Responses of the column to feed flow and aqueous reflux flow are simulated.The movement of temperature front is also simulated.The comparison between simulation and industrial values shows that the model and algorithm are effective.On the basis of simulation and analysis,control strategy,online optimization and so on can be implemented effectively in dehydration process of purified terephthalic acid solvent.展开更多
In this work, an industrial acetic acid dehydration system via heterogeneous azeotropic distillation is simulated by Aspen Plus software. Residue curves are used to analyze the distillating behavior, and appropriate o...In this work, an industrial acetic acid dehydration system via heterogeneous azeotropic distillation is simulated by Aspen Plus software. Residue curves are used to analyze the distillating behavior, and appropriate operating region of the system is determined. Based on steady states simulation, a sensitivity analysis is carried out to detect the output multiple steady states in the system. Different solution branches are observered when the flow rates of the feed stream and the organic reflux stream are selected as manipulated variables. The performance of the column under different steady states is different. A method is oroposed to achieve the desired steady state.展开更多
The use of H2SO4‐,HCl‐,H3PO4‐,and CH3COOH‐activated montmorillonite(Mt)and WOx/H3PO4‐activated Mt as catalysts for the gas‐phase dehydration of glycerol was investigated.The WOx/H3PO4‐activated Mt catalysts wer...The use of H2SO4‐,HCl‐,H3PO4‐,and CH3COOH‐activated montmorillonite(Mt)and WOx/H3PO4‐activated Mt as catalysts for the gas‐phase dehydration of glycerol was investigated.The WOx/H3PO4‐activated Mt catalysts were prepared by an impregnation method using H3PO4‐activated Mt(Mt‐P)as the support.The catalysts were characterized using powder X‐ray diffraction,Fourier‐transform infrared spectroscopy,N2adsorption‐desorption,diffuse reflectance ultraviolet‐visible spectroscopy,temperature‐programmed desorption of NH3,and thermogravimetric analysis.The acid activation of Mt and WOx loaded on Mt‐P affected the strength and number of acid sites arising from H+exchange,the leaching of octahedral Al3+cations from Mt octahedral sheets,and the types of WOx(2.7≤x≤3)species(i.e.,isolated WO4/WO6‐containing clusters,two‐dimensional[WO6]polytungstates,or three‐dimensional WO3crystals).The strong acid sites were weakened,and the weak and medium acid sites were strengthened when the W loading on Mt‐P was12wt%(12%W/Mt‐P).The12%W/Mt‐P catalyst showed the highest catalytic activity.It gave a glycerol conversion of89.6%and an acrolein selectivity of81.8%at320°C.Coke deposition on the surface of the catalyst led to deactivation.展开更多
The simulated process model of the HAc dehydration process under actual overloaded condition was conducted by amending the model of standard condition in our previous work using the process data collected from actual ...The simulated process model of the HAc dehydration process under actual overloaded condition was conducted by amending the model of standard condition in our previous work using the process data collected from actual production. Based on the actual process model, the operation optimization analysis of each plant(HAc dehydration column, decanter and NPA recycle column) was conducted using Residue Curve Maps(RCMs),sensitivity analysis and software optimization module. Based on the optimized parameters, the influence of feed impurity MA and the temperature of decanter on the separating effect and energy consumption of the whole process were analyzed. Then the whole process operation optimizing strategy was proposed with the objective that the total reboiler duty Q Total of C-1 and C-3 reaches the minimum value, keeping C-1 and C-3 at their optimized separation parameters obtained above, connecting all the broken recycle and connection streams, and using the temperature of D-1 as operation variable. The optimization result shows that the total reboiler duty Q Total of the whole process can reach the minimum value of 128.32 × 10~6 k J·h^(-1) when the temperature of decanter is 352.35 K, and it can save 5.94 × 10~6 k J·h^(-1), about 2.56 t·h^(-1) low-pressure saturated vapor.展开更多
The dehydration of 2-(4'-ethylbenzoyl) benzoic acid (BE acid) to 2-ethylanthraquinone (2-EAQ) was investigated over solid acid catalysts. The results showed that H-beta zeolite catalyst modified by dilute HNO3 ...The dehydration of 2-(4'-ethylbenzoyl) benzoic acid (BE acid) to 2-ethylanthraquinone (2-EAQ) was investigated over solid acid catalysts. The results showed that H-beta zeolite catalyst modified by dilute HNO3 solution exhibited an excellent performance. In our study, the conversion of BE acid can reach 96.7%, and the selectivity to 2-EAQ is up to 99.6%.展开更多
The main challenge in the dehydration of glycerol to acrolein lies in overcoming catalystdeactivation and improving the selectivity to acrolein. The relationship between theacidity in the mesoporous channels and catal...The main challenge in the dehydration of glycerol to acrolein lies in overcoming catalystdeactivation and improving the selectivity to acrolein. The relationship between theacidity in the mesoporous channels and catalytic performance of glycerol dehydration israrely reported. In this work, to investigate the influence of acidity in the mesoporouschannels of hierarchical ZSM-5 catalysts on the dehydration of glycerol to acrolein, a seriesof hierarchical ZSM-5 zeolites with comparable mesoporous volume and mesoporous sizebut different acid properties in mesopores have been successfully prepared via alkalinetreatment. The sample with the abundant mesoporosity and highest acidity display thebest performance.展开更多
Glycerol monolaurate(GML)is a widely used industrial chemical with excellent emulsification and antibacterial effect.The direct esterification of glycerol with lauric acid is the main method to synthesize GML.In this ...Glycerol monolaurate(GML)is a widely used industrial chemical with excellent emulsification and antibacterial effect.The direct esterification of glycerol with lauric acid is the main method to synthesize GML.In this work,the kinetic process of direct esterification was systematically studied using p-toluenesulfonic acid as catalyst.A complete kinetic model of consecutive esterification reaction has been established,and the kinetic equation of acid catalysis was deduced.The isomerization reactions of GML and glycerol dilaurate were investigated.It was found that the reaction was an equilibrium reaction and the reaction rate was faster than the esterification reaction.The kinetic equations of the consecutive esterification reaction were obtained by experiments as k_(1)=(276+92261Xcat)exp(-37720/RT)and k_(2)=(80+4413Xcat)exp(-32240/RT).The kinetic results are beneficial to the optimization of operating conditions and reactor design in GML production process.展开更多
The production of industrial chemicals with renewable biomass feedstock holds potential to aid the world in pursuing a carbon-neutral society.Trimellitic and trimesic acids are important commodity chemicals in industr...The production of industrial chemicals with renewable biomass feedstock holds potential to aid the world in pursuing a carbon-neutral society.Trimellitic and trimesic acids are important commodity chemicals in industry that are prepared by the oxidation of petroleum-derived trimethylbenzene.To reduce the dependence on the limited oil source,we develop a potential sustainable alternative towards trimellitic and trimesic acids using biomass-based 2-methyl-2,4-pentandiol(MPD),acrylate and crotonaldehyde as starting materials.The process for trimellitic acid includes dehydration/D-A reaction of MPD and acrylate,flow aromatization over Pd/C catalyst,hydrolysis and catalytic aerobic oxidation(60%overall yield).The challenging regioselectivity issue of D-A reaction is tackled by a matched combination of temperature and deep eutectic solvent ChCl/HCO_(2)H.Crotonaldehyde can also participate in the reaction,followed by Pd/C-catalyzed decarbonylation/dehydrogenation and oxidation to provide trimesic acid in 54%overall yield.Life cycle assessment implies that compared to conventional fossil process,our biomass-based routes present a potential in reducing carbon emissions.展开更多
The technology that silicic acid was pressurized under high temperature in order to dehydrate and transform was investigated in the paper. The effects, such as the ratio of liquid to solid, pressure, temperature, and ...The technology that silicic acid was pressurized under high temperature in order to dehydrate and transform was investigated in the paper. The effects, such as the ratio of liquid to solid, pressure, temperature, and reaction time on the dehydration rate and volume shrinkage rate, were researched. The experimental results show that the dehy- dration rate of silicic acid is up to 41.20 %, accompanying with the volume shrinkage rate of 40.37 % after silicic acid is pressurized under high temperature in the high-pressure kettle. The results of silicic acid tested by SEM indicate that the metasilicate acid molecules and water molecules are closely arranged, and there are almost no gaps before pressure reaction. There are many gaps accompanying with formatting lamellar structure after pressure reaction. The experimental results indicate the effect that silicic acid is dehydrated and transformation is obvious under high temperature and pressure.展开更多
A serial of protonated and layered transition metal oxides, including layered HTaWO6, HNbMoO6 as well as HNbWO6, were synthesized by solid-state reaction and ion-exchange. The layered HTaWO6 has been systematically st...A serial of protonated and layered transition metal oxides, including layered HTaWO6, HNbMoO6 as well as HNbWO6, were synthesized by solid-state reaction and ion-exchange. The layered HTaWO6 has been systematically studied as a solid acid to realize the dehydration of fructose to 5-hydroxymethylfurfural (HMF). The transition metal oxide samples were characterized with ICP-OES, EDS, XRD, XPS, SEM, TGA, FT-IR, N-2 adsorption-desorption and NH3-TPD. The influential factors such as reaction temperature, reaction time, solvent, catalyst amount and substrate concentration were deeply investigated. The optimized fructose conversion rate of 99% with HMF yield of 67% were achieved after 30 min at 140 degrees C in dimethylsulfoxide. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
Lipophilic antioxidants are used in edible oils and oleaginous foods. Therefore, development of novel lipophilic antioxidant is very important. p-toluenesulfonic acid(PTSA) catalyzed esterification of dihydrocaffeic a...Lipophilic antioxidants are used in edible oils and oleaginous foods. Therefore, development of novel lipophilic antioxidant is very important. p-toluenesulfonic acid(PTSA) catalyzed esterification of dihydrocaffeic acid(DHCA) with hexanol was selected as model reaction to investigate the synthesis of lipophilic antioxidant. The highest yield of hexyl dihydrocaffeate was achieved under the following optimum conditions: 1 mol% PTSA, 1:30 molar ratio of dihydrocaffeic acid to hexanol without molecular sieves at 80 ℃ in 2 h. The relationship between temperature and the forward rate constant gave the activation energy of 22.6 k J/mol, which indicated that PTSA possessed high catalytic activity in the synthesis of hexyl dihydrocaffeate. In addition, the activity of PTSA was not inhibited by the water produced during esterification process. Importantly, this esterification could even proceed smoothly when initial water content was below 5%. In addition, the esterification of a set of phenolic acids could take place efficiently under the same conditions affording the corresponding esters in good to excellent yields. This established method will provide an efficient method for produce lipophilic antioxidants from various natural phenolic acids.展开更多
Phosphoric acid treated niobic acid(NbP)was used for the dehydration of xylose to furfural in biphasic solvent system,which was found to exhibit the best performance among the tested catalysts.The excellent performanc...Phosphoric acid treated niobic acid(NbP)was used for the dehydration of xylose to furfural in biphasic solvent system,which was found to exhibit the best performance among the tested catalysts.The excellent performance of NbP could be explained by the better synergistic cooperation between Bro¨nsted and Lewis acid sites.Moreover,NbP showed good stability and no obvious deactivation or leaching of Nb could be observed after six continuous recycles.展开更多
Glycerol dehydration to acrolein over a series of supported silicotungstic acid catalysts(SiWx‐Al/Zry)was investigated.Characterization results showed that the final catalyst had high thermal stability,a large pore d...Glycerol dehydration to acrolein over a series of supported silicotungstic acid catalysts(SiWx‐Al/Zry)was investigated.Characterization results showed that the final catalyst had high thermal stability,a large pore diameter,strong Lewis acidic sites,and a large specific surface area.X‐ray photoelectron survey spectra clearly showed peaks attributable to W(W4f=35.8eV),Al2O3(Al2p=74.9eV),and ZrO2(Zr3d=182.8eV).The highest acrolein selectivity achieved was87.3%at97%glycerol conversion over the SiW20‐Al/Zr10catalyst.The prepared catalysts were highly active and selective for acrolein formation even after40h because of the presence of high concentrations of Lewis acidic sites,which significantly reduced the amount of coke on the catalyst surface.Response surface methodology optimization showed that87.7%acrolein selectivity at97.0%glycerol conversion could be obtained under the following optimal reaction conditions:0.5wt%catalyst,reaction temperature300°C,and feed glycerol concentration10wt%.Evaluation of a mass‐transfer‐limited regime showed the absence of internal and external diffusions over pellets of diameter dP<20μm.These results show that glycerol dehydration over a strong Lewis acid catalyst is a promising method for acrolein production.展开更多
A natural attapulgite (ATP)‐based catalyst, sulfated In2O3‐ATP (SO42-/In2O3‐ATP), was obtained by an impregnation‐calcination method and was used to efficiently and selectively produce the useful platform chem...A natural attapulgite (ATP)‐based catalyst, sulfated In2O3‐ATP (SO42-/In2O3‐ATP), was obtained by an impregnation‐calcination method and was used to efficiently and selectively produce the useful platform chemical 5‐hydroxymethylfurfural (HMF) from hexoses. Some important reaction param‐eters were studied, revealing that Lewis and Br-nsted acid sites on SO42-/In2O3‐ATP catalyze glu‐cose isomerization and fructose dehydration. The yields of HMF from glucose and fructose were 40.2%and 46.2%, respectively, using the optimal conditions of 180℃ for 60 min with 10 wt%of solid acid catalyst in a mixture of γ‐valerolactone‐water (9:1).展开更多
文摘Various ZSM-5 zeolites modified with alkali metals (Li, Na, K, Rb, and Cs) were prepared using ion exchange. The catalysts were used to enhance the catalytic dehydration of lactic acid (LA) to acrylic acid (AA). The effects of cationic species on the structures and surface acid-base distributions of the ZSM-5 zeolites were investigated. The important factors that affect the catalytic performance were also identified. The modified ZSM-5 catalysts were characterized using X-ray diffraction, tempera- ture-programmed desorptions of NH3 and CO2, pyridine adsorption spectroscopy, and N2 adsorption to determine the crystal phase structures, surface acidities and basicities, nature of acid sites, specific surface areas, and pore volumes. The results show that the acid-base sites that are adjusted by alkali-metal species, particularly weak acid-base sites, are mainly responsible for the formation of AA. The KZSM-5 catalyst, in particular, significantly improved LA conversion and AA selectivity because of the synergistic effect of weak acid-base sites. The reaction was conducted at different reaction temperatures and liquid hourly space velocities (LHSVs) to understand the catalyst selectivity for AA and trends in byproduct formation. Approximately 98% LA conversion and 77% AA selectivity were achieved using the KZSM-5 catalyst under the optimum conditions (40 wt% LA aqueous solution, 365 ℃, and LHSV 2 h-1).
文摘Formic acid (HCOOH) decomposition at Pt film electrode has been studied by electrochem- ical in situ FTIR spectroscopy under attenuated-total-reflection configuration, in order to clarify whether bridge-bonded formate (HCOOD) is the reactive intermediate for COad for-mation from HCOOH molecules. When switching from HCOOH-free solution to HCOOH- containing solution at constant potential (E=0.4 V vs. RHE), we found that immediately upon solution switch COad formation rate is the highest, while surface coverage of formate is zero, then after COad formation rate decreases, while formate coverage reaches a steady state coverage quickly within ca. 1 s. Potential step experiment from E=0.75 V to 0.35 V, reveals that formate band intensity drops immediately right after the potential step, while the COad signal develops slowly with time. Both facts indicate that formate is not the reactive intermediate for formic acid dehydration to CO.
文摘In this paper, the effect of acidity of zeolites with FER framework was studied in the methanol dehydration to dimethyl ether reaction, by comparing catalysts with different Si/Al ratios(namely 8, 30 and60). The aim of this work was to investigate how the acid sites concentration, strength, distribution and typology(Br?nsted and Lewis) affect methanol conversion, DME selectivity and coke formation. It was found that the aluminium content affects slightly acid sites strength whilst a relevant effect on acid sites concentration and distribution(Br?nsted/Lewis) was observed as 24% of Lewis sites were found on Alrichest samples, whilst less than 10% of Lewis acid sites were observed on FER at higher Si/Al ratio. All the investigated catalyst samples showed a selectivity toward DME always greater than 0.9 and samples with the lowest Si/Al ratio exhibit the best performances in terms of methanol conversion, approaching the theoretical equilibrium value(around 0.85) at temperatures below 200 °C. Turnover-frequency analysis suggests that this result seems to be related not only to the higher amount of acid sites but also that the presence of Lewis acid sites may play a significant role in converting methanol. On the other hand, the presence of Lewis acid sites, combined with a high acidity, promote the formation of by-products(mainly methane) and coke deposition during the reaction. As final evidence, all the investigated catalysts exhibit very high resistance to deactivation by coke deposition, over 60 h continuous test, and a GC–MS analysis of the coke deposited on the catalyst surface reveals tetra-methyl benzene as main component.
基金the State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization of China for its financial supportthe financial support of National Natural Science Foundation of China(Grant No.21576168)Science and Technology Cooperation Fund of Sichuan University-Panzhihua(No:2018CDPZH-23-SCU)。
文摘In order to concentrate the diluted sulfuric acid from the titanium dioxide(TiO2)production of sulphate process,a new concentration process was proposed by coupling chemical dehydration and multi-effect evaporation.The ferrous sulfate monohydrate(FeSO4·H2O),as the dehydrant,was added to the diluted sulfuric acid to form ferrous sulfate heptahydrate(FeSO4·7H2O)according to the H2SO4-FeSO4-H2O phase diagrams,which partially removes the water.This process was named as Chemical Dehydration Process.The residual water was further removed by two-effect evaporation and finally 70 wt%sulfuric acid was obtained.The FeSO4·H2O can be regenerated through drying and dehydration of FeSO4·7H2O.The results show that FeSO4·H2O is the most suitable dehydrant,the optimal reaction time of chemical dehydration process is 30 min,and low temperature is favorable for the dehydration reaction.45.17%of the entire removed water can be removed by chemical dehydration from the diluted sulfuric acid.This chemical dehydration process is also energy efficient with 24.76%saving compared with the direct evaporation process.Furthermore,51.21%of the FeSO4 dissolved originally in the diluted sulfuric acid are precipitated out during the chemical dehydration,which greatly reduces the solid precipitation and effectively alleviates the scaling in the subsequent multi-effect evaporation process.
基金Supported by the National Natural Science Foundation of China(61072127) the Outstanding Young Innovative Personnel Project of Guangdong Colleges(LYM08098)
文摘Dynamic model for dehydration process of industrial purified terephthalic acid solvent is investigated to understand and characterize the process.A temperature differential expression is presented,which ensures the equation to convergence and short computation time.The model is used to study the dynamic behavior of an azeotropic distillation column separating acetic acid and water using n-butyl acetate as the entrainer.Responses of the column to feed flow and aqueous reflux flow are simulated.The movement of temperature front is also simulated.The comparison between simulation and industrial values shows that the model and algorithm are effective.On the basis of simulation and analysis,control strategy,online optimization and so on can be implemented effectively in dehydration process of purified terephthalic acid solvent.
基金Supported by the National Natural Science Foundation of China (20976048) and Shanghai Leading Academic Discipline Project (B504).
文摘In this work, an industrial acetic acid dehydration system via heterogeneous azeotropic distillation is simulated by Aspen Plus software. Residue curves are used to analyze the distillating behavior, and appropriate operating region of the system is determined. Based on steady states simulation, a sensitivity analysis is carried out to detect the output multiple steady states in the system. Different solution branches are observered when the flow rates of the feed stream and the organic reflux stream are selected as manipulated variables. The performance of the column under different steady states is different. A method is oroposed to achieve the desired steady state.
基金supported by the National Natural Science Foundation of China(21373185,41672033,21506188,21404090)the Open Project Programs of Engineering Research Center of Non-metallic Minerals of Zhejiang Province(ZD2015k07)+2 种基金of State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology(GCTKF2014006)of Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province(2016)of State Key Laboratory of Chemical Resource Engineering,Beijing University of Chemical Technology(CRE-2016-C-303)~~
文摘The use of H2SO4‐,HCl‐,H3PO4‐,and CH3COOH‐activated montmorillonite(Mt)and WOx/H3PO4‐activated Mt as catalysts for the gas‐phase dehydration of glycerol was investigated.The WOx/H3PO4‐activated Mt catalysts were prepared by an impregnation method using H3PO4‐activated Mt(Mt‐P)as the support.The catalysts were characterized using powder X‐ray diffraction,Fourier‐transform infrared spectroscopy,N2adsorption‐desorption,diffuse reflectance ultraviolet‐visible spectroscopy,temperature‐programmed desorption of NH3,and thermogravimetric analysis.The acid activation of Mt and WOx loaded on Mt‐P affected the strength and number of acid sites arising from H+exchange,the leaching of octahedral Al3+cations from Mt octahedral sheets,and the types of WOx(2.7≤x≤3)species(i.e.,isolated WO4/WO6‐containing clusters,two‐dimensional[WO6]polytungstates,or three‐dimensional WO3crystals).The strong acid sites were weakened,and the weak and medium acid sites were strengthened when the W loading on Mt‐P was12wt%(12%W/Mt‐P).The12%W/Mt‐P catalyst showed the highest catalytic activity.It gave a glycerol conversion of89.6%and an acrolein selectivity of81.8%at320°C.Coke deposition on the surface of the catalyst led to deactivation.
基金Supported by Shanghai University Youth Teacher Training Program(ZZsl15002)Shanghai Sailing Program(17YF1413100 and 17YF1428300)
文摘The simulated process model of the HAc dehydration process under actual overloaded condition was conducted by amending the model of standard condition in our previous work using the process data collected from actual production. Based on the actual process model, the operation optimization analysis of each plant(HAc dehydration column, decanter and NPA recycle column) was conducted using Residue Curve Maps(RCMs),sensitivity analysis and software optimization module. Based on the optimized parameters, the influence of feed impurity MA and the temperature of decanter on the separating effect and energy consumption of the whole process were analyzed. Then the whole process operation optimizing strategy was proposed with the objective that the total reboiler duty Q Total of C-1 and C-3 reaches the minimum value, keeping C-1 and C-3 at their optimized separation parameters obtained above, connecting all the broken recycle and connection streams, and using the temperature of D-1 as operation variable. The optimization result shows that the total reboiler duty Q Total of the whole process can reach the minimum value of 128.32 × 10~6 k J·h^(-1) when the temperature of decanter is 352.35 K, and it can save 5.94 × 10~6 k J·h^(-1), about 2.56 t·h^(-1) low-pressure saturated vapor.
文摘The dehydration of 2-(4'-ethylbenzoyl) benzoic acid (BE acid) to 2-ethylanthraquinone (2-EAQ) was investigated over solid acid catalysts. The results showed that H-beta zeolite catalyst modified by dilute HNO3 solution exhibited an excellent performance. In our study, the conversion of BE acid can reach 96.7%, and the selectivity to 2-EAQ is up to 99.6%.
基金The work was supported by the Australian Research Council Discovery Projects(grant no.DP150103842,DP180104010,DE190101618)the SOAR Fellowship,and the Sydney Nano Grand Challenge from the University of Sydney。
文摘The main challenge in the dehydration of glycerol to acrolein lies in overcoming catalystdeactivation and improving the selectivity to acrolein. The relationship between theacidity in the mesoporous channels and catalytic performance of glycerol dehydration israrely reported. In this work, to investigate the influence of acidity in the mesoporouschannels of hierarchical ZSM-5 catalysts on the dehydration of glycerol to acrolein, a seriesof hierarchical ZSM-5 zeolites with comparable mesoporous volume and mesoporous sizebut different acid properties in mesopores have been successfully prepared via alkalinetreatment. The sample with the abundant mesoporosity and highest acidity display thebest performance.
基金supported by the National Research and Development Program of China(2021YFC3001100)the National Natural Science Foundation of China(22288102).
文摘Glycerol monolaurate(GML)is a widely used industrial chemical with excellent emulsification and antibacterial effect.The direct esterification of glycerol with lauric acid is the main method to synthesize GML.In this work,the kinetic process of direct esterification was systematically studied using p-toluenesulfonic acid as catalyst.A complete kinetic model of consecutive esterification reaction has been established,and the kinetic equation of acid catalysis was deduced.The isomerization reactions of GML and glycerol dilaurate were investigated.It was found that the reaction was an equilibrium reaction and the reaction rate was faster than the esterification reaction.The kinetic equations of the consecutive esterification reaction were obtained by experiments as k_(1)=(276+92261Xcat)exp(-37720/RT)and k_(2)=(80+4413Xcat)exp(-32240/RT).The kinetic results are beneficial to the optimization of operating conditions and reactor design in GML production process.
基金supported by the National Key R&D Program of China(no.2022YFA1504902,2022YFB4201802)National Natural Science Foundation of China(no.21721004,21801239,22178335,22078318),DICP(Grant:DICP I201944)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(grant:YLU-DNL Fund 2021020).
文摘The production of industrial chemicals with renewable biomass feedstock holds potential to aid the world in pursuing a carbon-neutral society.Trimellitic and trimesic acids are important commodity chemicals in industry that are prepared by the oxidation of petroleum-derived trimethylbenzene.To reduce the dependence on the limited oil source,we develop a potential sustainable alternative towards trimellitic and trimesic acids using biomass-based 2-methyl-2,4-pentandiol(MPD),acrylate and crotonaldehyde as starting materials.The process for trimellitic acid includes dehydration/D-A reaction of MPD and acrylate,flow aromatization over Pd/C catalyst,hydrolysis and catalytic aerobic oxidation(60%overall yield).The challenging regioselectivity issue of D-A reaction is tackled by a matched combination of temperature and deep eutectic solvent ChCl/HCO_(2)H.Crotonaldehyde can also participate in the reaction,followed by Pd/C-catalyzed decarbonylation/dehydrogenation and oxidation to provide trimesic acid in 54%overall yield.Life cycle assessment implies that compared to conventional fossil process,our biomass-based routes present a potential in reducing carbon emissions.
基金supported by the Social Development Plan of Science and Technology-Scientific Research Institute Technology and Development Research Project in Yunnan Province (No. 2009CF011)
文摘The technology that silicic acid was pressurized under high temperature in order to dehydrate and transform was investigated in the paper. The effects, such as the ratio of liquid to solid, pressure, temperature, and reaction time on the dehydration rate and volume shrinkage rate, were researched. The experimental results show that the dehy- dration rate of silicic acid is up to 41.20 %, accompanying with the volume shrinkage rate of 40.37 % after silicic acid is pressurized under high temperature in the high-pressure kettle. The results of silicic acid tested by SEM indicate that the metasilicate acid molecules and water molecules are closely arranged, and there are almost no gaps before pressure reaction. There are many gaps accompanying with formatting lamellar structure after pressure reaction. The experimental results indicate the effect that silicic acid is dehydrated and transformation is obvious under high temperature and pressure.
基金supported by the National Natural Science Foundation of China (21472189)National Basic Research Program of China (973 Program, 2012CB215304)+2 种基金the Natural Science Foundation of Guangdong Province, China (2015A030312007)Guangdong Key Laboratory of New and Renewable Energy Research and Development (Y607jl1001)Science and Technology Planning Project of Guangdong Province, China (2015A010106010)
文摘A serial of protonated and layered transition metal oxides, including layered HTaWO6, HNbMoO6 as well as HNbWO6, were synthesized by solid-state reaction and ion-exchange. The layered HTaWO6 has been systematically studied as a solid acid to realize the dehydration of fructose to 5-hydroxymethylfurfural (HMF). The transition metal oxide samples were characterized with ICP-OES, EDS, XRD, XPS, SEM, TGA, FT-IR, N-2 adsorption-desorption and NH3-TPD. The influential factors such as reaction temperature, reaction time, solvent, catalyst amount and substrate concentration were deeply investigated. The optimized fructose conversion rate of 99% with HMF yield of 67% were achieved after 30 min at 140 degrees C in dimethylsulfoxide. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金Supported by Scientific and Technological Project of Henan Province(No.182102110024)Basic Research Funds of Henan University of Technology(No.2015RCJH01)
文摘Lipophilic antioxidants are used in edible oils and oleaginous foods. Therefore, development of novel lipophilic antioxidant is very important. p-toluenesulfonic acid(PTSA) catalyzed esterification of dihydrocaffeic acid(DHCA) with hexanol was selected as model reaction to investigate the synthesis of lipophilic antioxidant. The highest yield of hexyl dihydrocaffeate was achieved under the following optimum conditions: 1 mol% PTSA, 1:30 molar ratio of dihydrocaffeic acid to hexanol without molecular sieves at 80 ℃ in 2 h. The relationship between temperature and the forward rate constant gave the activation energy of 22.6 k J/mol, which indicated that PTSA possessed high catalytic activity in the synthesis of hexyl dihydrocaffeate. In addition, the activity of PTSA was not inhibited by the water produced during esterification process. Importantly, this esterification could even proceed smoothly when initial water content was below 5%. In addition, the esterification of a set of phenolic acids could take place efficiently under the same conditions affording the corresponding esters in good to excellent yields. This established method will provide an efficient method for produce lipophilic antioxidants from various natural phenolic acids.
基金supported by the Natural Science Foundation of China (No.21106143)100-talent project of Dalian Institute of Chemical Physics (DICP)the Independent Innovation Foundation of State Key Laboratory of Catalysis (No.R201113)
文摘Phosphoric acid treated niobic acid(NbP)was used for the dehydration of xylose to furfural in biphasic solvent system,which was found to exhibit the best performance among the tested catalysts.The excellent performance of NbP could be explained by the better synergistic cooperation between Bro¨nsted and Lewis acid sites.Moreover,NbP showed good stability and no obvious deactivation or leaching of Nb could be observed after six continuous recycles.
基金the Ministry of Science, Technology and Innovation (MOSTI), Malaysia for supporting the project under project no. 03–01–06–SF0963
文摘Glycerol dehydration to acrolein over a series of supported silicotungstic acid catalysts(SiWx‐Al/Zry)was investigated.Characterization results showed that the final catalyst had high thermal stability,a large pore diameter,strong Lewis acidic sites,and a large specific surface area.X‐ray photoelectron survey spectra clearly showed peaks attributable to W(W4f=35.8eV),Al2O3(Al2p=74.9eV),and ZrO2(Zr3d=182.8eV).The highest acrolein selectivity achieved was87.3%at97%glycerol conversion over the SiW20‐Al/Zr10catalyst.The prepared catalysts were highly active and selective for acrolein formation even after40h because of the presence of high concentrations of Lewis acidic sites,which significantly reduced the amount of coke on the catalyst surface.Response surface methodology optimization showed that87.7%acrolein selectivity at97.0%glycerol conversion could be obtained under the following optimal reaction conditions:0.5wt%catalyst,reaction temperature300°C,and feed glycerol concentration10wt%.Evaluation of a mass‐transfer‐limited regime showed the absence of internal and external diffusions over pellets of diameter dP<20μm.These results show that glycerol dehydration over a strong Lewis acid catalyst is a promising method for acrolein production.
基金supported by the Fundamental Research Funds for the Central Universities (TD2011-11,BLYJ201519)Beijing Higher Education Young Elite Teacher Project (YETP0765)+2 种基金National Natural Science Foundation of China (31170556)New Century Excellent Talents in University (NCET-13-0671)State Forestry Administration of China (201204803)~~
文摘A natural attapulgite (ATP)‐based catalyst, sulfated In2O3‐ATP (SO42-/In2O3‐ATP), was obtained by an impregnation‐calcination method and was used to efficiently and selectively produce the useful platform chemical 5‐hydroxymethylfurfural (HMF) from hexoses. Some important reaction param‐eters were studied, revealing that Lewis and Br-nsted acid sites on SO42-/In2O3‐ATP catalyze glu‐cose isomerization and fructose dehydration. The yields of HMF from glucose and fructose were 40.2%and 46.2%, respectively, using the optimal conditions of 180℃ for 60 min with 10 wt%of solid acid catalyst in a mixture of γ‐valerolactone‐water (9:1).