The friction and wear behaviors of Inconel 690 flat against Si3Ni4 ball were investigated using a hydraulic fretting test rig equipped with a liquid container device. The loads of 20-80 N, reciprocating amplitudes of ...The friction and wear behaviors of Inconel 690 flat against Si3Ni4 ball were investigated using a hydraulic fretting test rig equipped with a liquid container device. The loads of 20-80 N, reciprocating amplitudes of 80-200 μm and two different environments (distilled water and hydrazine solution at temperatures from 25 to 90 ℃) were selected. The results show that the ratio of Ft/Fn is lower in distilled water than that in hydrazine solution at the same temperature in the slip regime. Both the ratio of Ft/Fn and wear volume gradually increase with increasing medium temperature under the given normal load and displacement amplitude. Besides the displacement amplitude and load, temperature also plays an important role for wear behavior of Inconel 690 material. The increase of temperature could reduce the concentration of dissolved oxygen, and promote the absorption reaction of hydrazine and dissolved oxygen. As a result, the oxidative corrosion rate is obviously lowered. Abrasive wear and delamination wear are the main mechanisms of Inconel 690 in distilled water. However, in hydrazine solution the cracks accompanied by abrasive wear and delamination wear are the main mechanisms.展开更多
Experiments were performed on 20 different types of materials to analyze the impact contact wear and to establish the wear mechanism map, The wear mechanism has been categorized into three prominent regions (delamina...Experiments were performed on 20 different types of materials to analyze the impact contact wear and to establish the wear mechanism map, The wear mechanism has been categorized into three prominent regions (delamination wear, quasi-nano wear and lamination-like wear) and is governed by two hardness thresholds (Hdq and Hql). When the material hardness gcp〈Hdq, the delamination wear is the dominant wear mechanism; when Hcp〉Hql, the mechanism is lamination-like wear; however, whenHco is between Hdq and Hql, the mechanism is determined to be quasi-nano wear. Hdq is determined to be the threshold hardness between delamination wear and quasi-nano wear that reflects the cracks being produced in the subsurface layer, whereas, Hql is termed threshold hardness between quasi-nano wear and lamination-like wear with formation of nanostructure within the surface layer.展开更多
基金Project(51075342)supported by the National Natural Science Foundation of China
文摘The friction and wear behaviors of Inconel 690 flat against Si3Ni4 ball were investigated using a hydraulic fretting test rig equipped with a liquid container device. The loads of 20-80 N, reciprocating amplitudes of 80-200 μm and two different environments (distilled water and hydrazine solution at temperatures from 25 to 90 ℃) were selected. The results show that the ratio of Ft/Fn is lower in distilled water than that in hydrazine solution at the same temperature in the slip regime. Both the ratio of Ft/Fn and wear volume gradually increase with increasing medium temperature under the given normal load and displacement amplitude. Besides the displacement amplitude and load, temperature also plays an important role for wear behavior of Inconel 690 material. The increase of temperature could reduce the concentration of dissolved oxygen, and promote the absorption reaction of hydrazine and dissolved oxygen. As a result, the oxidative corrosion rate is obviously lowered. Abrasive wear and delamination wear are the main mechanisms of Inconel 690 in distilled water. However, in hydrazine solution the cracks accompanied by abrasive wear and delamination wear are the main mechanisms.
基金supported by the National Natural Science Foundation of China(Grant Nos.5860269,58971075,50071045,50471036)
文摘Experiments were performed on 20 different types of materials to analyze the impact contact wear and to establish the wear mechanism map, The wear mechanism has been categorized into three prominent regions (delamination wear, quasi-nano wear and lamination-like wear) and is governed by two hardness thresholds (Hdq and Hql). When the material hardness gcp〈Hdq, the delamination wear is the dominant wear mechanism; when Hcp〉Hql, the mechanism is lamination-like wear; however, whenHco is between Hdq and Hql, the mechanism is determined to be quasi-nano wear. Hdq is determined to be the threshold hardness between delamination wear and quasi-nano wear that reflects the cracks being produced in the subsurface layer, whereas, Hql is termed threshold hardness between quasi-nano wear and lamination-like wear with formation of nanostructure within the surface layer.