采用成核-晶化隔离法制备LiAl-CO_(3)-LDHs晶核,在LDHs晶核晶化的过程中引入葡萄糖分子作为碳源,构筑组成和结构可调的LDHs/C型杂化复合前体。通过高温处理,实现前体的结构拓扑转变及无定形碳组分的去除,得到高比表面积的LiAl复合金属...采用成核-晶化隔离法制备LiAl-CO_(3)-LDHs晶核,在LDHs晶核晶化的过程中引入葡萄糖分子作为碳源,构筑组成和结构可调的LDHs/C型杂化复合前体。通过高温处理,实现前体的结构拓扑转变及无定形碳组分的去除,得到高比表面积的LiAl复合金属氧化物型固体碱催化剂。采用XRD、FT-IR、BET、TEM、SEM、CO_(2)-TPD等表征手段对催化剂的组成、结构、织构性能、表面碱性进行了详细研究,并以苯甲醛和氰基乙酸乙酯间的Knoevenagel缩合反应为探针反应系统地研究了催化剂的碱催化性能。研究结果表明,LDHs/C杂化前体制备过程中葡萄糖与金属离子的摩尔比、水热晶化温度以及焙烧温度是影响催化剂活性的主要因素,晶化温度和焙烧温度的提升不利于碱性位的充分暴露。在150℃的水热晶化温度下,葡萄糖与Al 3+的摩尔比为3时的杂化复合前体经500℃焙烧得到的LiAl-MMO-150-3-500固体催化剂比表面积高达229 m 2·g^(-1),苯酚吸附测得催化剂的总碱量为855μmol·g^(-1),对苯甲醛的转化率高达88.21%。展开更多
Poly(vinylidenefluoride-co-hexafluoropropylene)(P(VDF-HFP))/Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)(LATP)/P(VDFHFP) sandwiched hybrid solid electrolytes were precisely tailored and successfully fabricated to assemble int...Poly(vinylidenefluoride-co-hexafluoropropylene)(P(VDF-HFP))/Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)(LATP)/P(VDFHFP) sandwiched hybrid solid electrolytes were precisely tailored and successfully fabricated to assemble into allsolid-state lithium-ion batteries,which were systematically evaluated on microstructure,morphology,thermal stability and electrochemical performance.The sandwiched hybrid solid electrolytes can achieve intimate contact with cathode and anode electrodes to present an excellent interfacial stability.Furthermore,the sandwiched hybrid solid electrolytes possess flexible surface,wide electrochemical working window of 4.7 V,high ionic conductivity of 0.763 mS·cm^(-1) and high thermal stability of 460℃,which may contribute to realizing the practical application in all-solid-state lithium-ion batteries.The assembled cells with the hybrid solid electrolytes can quickly stabilize at a specific discharge capacity of 145.4 mAh·g^(-1) at 0.1 C after only 5 cycles and present admirable rate performance.In addition,morphology characterizations of the sandwiched hybrid solid electrolytes after long-term cycles show a relatively integrated structure coating with a compact LATP layer.The investigations afford a promising strategy that the sandwiched hybrid solid electrolytes can overcome the mechanical limitations of the interface between electrodes and inorganic solid electrolytes to provide favorable properties for all-solid-state lithium-ion batteries.展开更多
文摘采用成核-晶化隔离法制备LiAl-CO_(3)-LDHs晶核,在LDHs晶核晶化的过程中引入葡萄糖分子作为碳源,构筑组成和结构可调的LDHs/C型杂化复合前体。通过高温处理,实现前体的结构拓扑转变及无定形碳组分的去除,得到高比表面积的LiAl复合金属氧化物型固体碱催化剂。采用XRD、FT-IR、BET、TEM、SEM、CO_(2)-TPD等表征手段对催化剂的组成、结构、织构性能、表面碱性进行了详细研究,并以苯甲醛和氰基乙酸乙酯间的Knoevenagel缩合反应为探针反应系统地研究了催化剂的碱催化性能。研究结果表明,LDHs/C杂化前体制备过程中葡萄糖与金属离子的摩尔比、水热晶化温度以及焙烧温度是影响催化剂活性的主要因素,晶化温度和焙烧温度的提升不利于碱性位的充分暴露。在150℃的水热晶化温度下,葡萄糖与Al 3+的摩尔比为3时的杂化复合前体经500℃焙烧得到的LiAl-MMO-150-3-500固体催化剂比表面积高达229 m 2·g^(-1),苯酚吸附测得催化剂的总碱量为855μmol·g^(-1),对苯甲醛的转化率高达88.21%。
基金financially supported by the National Natural Science Foundation of China (Nos.51874046 and 51404038)the Outstanding Youth Foundation of Hubei Province (No.2020CFA090)。
文摘Poly(vinylidenefluoride-co-hexafluoropropylene)(P(VDF-HFP))/Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)(LATP)/P(VDFHFP) sandwiched hybrid solid electrolytes were precisely tailored and successfully fabricated to assemble into allsolid-state lithium-ion batteries,which were systematically evaluated on microstructure,morphology,thermal stability and electrochemical performance.The sandwiched hybrid solid electrolytes can achieve intimate contact with cathode and anode electrodes to present an excellent interfacial stability.Furthermore,the sandwiched hybrid solid electrolytes possess flexible surface,wide electrochemical working window of 4.7 V,high ionic conductivity of 0.763 mS·cm^(-1) and high thermal stability of 460℃,which may contribute to realizing the practical application in all-solid-state lithium-ion batteries.The assembled cells with the hybrid solid electrolytes can quickly stabilize at a specific discharge capacity of 145.4 mAh·g^(-1) at 0.1 C after only 5 cycles and present admirable rate performance.In addition,morphology characterizations of the sandwiched hybrid solid electrolytes after long-term cycles show a relatively integrated structure coating with a compact LATP layer.The investigations afford a promising strategy that the sandwiched hybrid solid electrolytes can overcome the mechanical limitations of the interface between electrodes and inorganic solid electrolytes to provide favorable properties for all-solid-state lithium-ion batteries.