The compressive behavior of laminates with a deeply embedded circular delamination was studied numerically and experimentally.In the finite element analysis(FEA),virtual crack closure technique(VCCT) and B-K law were ...The compressive behavior of laminates with a deeply embedded circular delamination was studied numerically and experimentally.In the finite element analysis(FEA),virtual crack closure technique(VCCT) and B-K law were employed to simulate the delamination growth,and the contact of the two substrates was considered.The effect of the delamination size and through-thickness position on the compressive behavior of laminates with an artificially embedded circular delamination was discussed.It is found that the through-thickness position affects the buckling mode,which then strongly influences delamination growth speed and direction,as well as the dominant component energy release rate(ERR).The numerical results agreed well with the experimental results.展开更多
文摘The compressive behavior of laminates with a deeply embedded circular delamination was studied numerically and experimentally.In the finite element analysis(FEA),virtual crack closure technique(VCCT) and B-K law were employed to simulate the delamination growth,and the contact of the two substrates was considered.The effect of the delamination size and through-thickness position on the compressive behavior of laminates with an artificially embedded circular delamination was discussed.It is found that the through-thickness position affects the buckling mode,which then strongly influences delamination growth speed and direction,as well as the dominant component energy release rate(ERR).The numerical results agreed well with the experimental results.