A viable strategy for enhancing photovoltaic performance is to comprehend the underlying quantum physical regime of charge transfer in a double quantum dots(DQD) photocell. This work explored the photovoltaic performa...A viable strategy for enhancing photovoltaic performance is to comprehend the underlying quantum physical regime of charge transfer in a double quantum dots(DQD) photocell. This work explored the photovoltaic performance dependent spatially correlated fluctuation in a DQD photocell. The effects of spatially correlated fluctuation on charge transfer and output photovoltaic efficiency were explored in a proposed DQD photocell model. The results revealed that the charge transport process and the time to peak photovoltaic efficiency were both significantly delayed by the spatially correlated fluctuation, while the anti-spatially correlated fluctuation reduced the output peak photovoltaic efficiency. Further results revealed that the delayed response could be suppressed by gap difference and tunneling coefficient within two dots. Subsequent investigation demonstrated that the delayed response was caused by the spatial correlation fluctuation slowing the generative process of noise-induced coherence, which had previously been proven to improve the quantum photovoltaic performance in quantum photocells. And the reduced photovoltaic properties were verified by the damaged noise-induced coherence owing to the anti-spatial correlation fluctuation and a hotter thermal ambient environment. The discovery of delayed response generated by the spatially correlated fluctuations will deepen the understanding of quantum features of electron transfer, as well as promises to take our understanding even further concerning quantum techniques for high efficiency DQD solar cells.展开更多
This paper proposes two lattice traffic models by taking into account the drivers' delay in response. The lattice versions of the hydrodynamic model are described by the differential-difference equation and differenc...This paper proposes two lattice traffic models by taking into account the drivers' delay in response. The lattice versions of the hydrodynamic model are described by the differential-difference equation and difference-difference equation, respectively. The stability conditions for the two models are obtained by using the linear stability theory. The modified KdV equation near the critical point is derived to describe the traffic jam by using the reductive perturbation method, and the kink-antikink soliton solutions related to the traffic density waves are obtained. The results show that the drivers' delay in sensing headway plays an important role in jamming transition.展开更多
Tropical zonally symmetric atmospheric warming occurs during ENSO's warm phase, and lags the equatorial east Pacific sea surface temperatures (SSTs) by 3-4 months. The role of the Indian and Atlantic oceans on the ...Tropical zonally symmetric atmospheric warming occurs during ENSO's warm phase, and lags the equatorial east Pacific sea surface temperatures (SSTs) by 3-4 months. The role of the Indian and Atlantic oceans on the atmospheric delayed response has been pointed out by earlier studies. For 1951-2004, a regression analysis based on the observed SST data shows the western Pacific has a similarly important role as the Indian and Atlantic. Nevertheless, there is time mismatch of around 1-2 months between the zonally averaged tropical SST anomalies and the atmospheric temperature anomalies. It is expected that the tropospheric temperature should be controlled by diabatic heating forcing, which is sensitive primarily to SST anomalies over regions of high climatological SST, rather than to the tropical mean SST anomalies. To describe this mechanism, we propose a parameterization scheme of diabatic heating anomalies dependant on SST anomalies and climatological SST. The 1-2 month mismatch between tropical mean SST anomalies and air temperature anomalies is reconciled by the fact that the tropical mean heating anomalies are dominated by the SST anomalies over regions of high climatological SST, and lag the tropical mean SST anomalies by 1 month. The mechanism described by this parameterization scheme joins several physical processes of ENSO with reasonable time intervals. And the parameterized heating anomalies work better than the tropical mean SST anomalies for capturing the atmospheric temperature signal relative to ENSO.展开更多
In this paper, we consider a new Monod type chemostat model with time delay and impulsive input concentration of the nutrient in a polluted environment. Using the discrete dynamical system determined by the stroboscop...In this paper, we consider a new Monod type chemostat model with time delay and impulsive input concentration of the nutrient in a polluted environment. Using the discrete dynamical system determined by the stroboscopic map, we obtain a "microorganism-extinction" periodic solution. Further, we establish the sufficient conditions for the global attractivity of the microorganism-extinction periodic solution. Using new computational techniques for impulsive and delayed differential equation, we prove that the system is permanent under appropriate conditions. Our results show that time delay is "profitless".展开更多
In this work, we investigate an HIV-1 infection model with a general incidence rate and delayed CTL immune response. The model admits three possible equilibria, an infection-free equilibrium <span><em>E<...In this work, we investigate an HIV-1 infection model with a general incidence rate and delayed CTL immune response. The model admits three possible equilibria, an infection-free equilibrium <span><em>E</em></span><sup>*</sup><sub style="margin-left:-6px;">0</sub>, CTL-inactivated infection equilibrium <span><em>E</em></span><sup>*</sup><sub style="margin-left:-6px;">1</sub> and CTL-activated infection equilibrium <span><em>E</em></span><sup>*</sup><sub style="margin-left:-6px;">2</sub>. We prove that in the absence of CTL immune delay, the model has exactly the basic behaviour model, for all positive intracellular delays, the global dynamics are determined by two threshold parameters <em>R</em><sub>0</sub> and <em>R</em><sub>1</sub>, if <em>R</em><sub>0</sub> <span style="font-size:12px;white-space:nowrap;">≤</span> 1, <span><em>E</em></span><sup>*</sup><span style="margin-left:-6px;"><sub>0</sub> </span>is globally asymptotically stable, if <em>R</em><sub>1</sub> <span style="font-size:12px;white-space:nowrap;">≤</span> 1 < <em>R</em><sub>0</sub>, <span><em>E</em></span><sup>*</sup><span style="margin-left:-6px;"><sub>1</sub> </span>is globally asymptotically stable and if <em>R</em><sub>1</sub> >1, <span><em>E</em></span><sup>*</sup><span style="margin-left:-6px;"><sub>2</sub> </span>is globally asymptotically stable. But if the CTL immune response delay is different from zero, then the behaviour of the model at <span><em>E</em></span><sup>*</sup><span style="margin-left:-6px;"><sub>2</sub> </span>changes completely, although <em>R</em><sub>1</sub> > 1, a Hopf bifurcation at <span><em>E</em></span><sup>*</sup><span style="margin-left:-6px;"><sub>2</sub> </span>is established. In the end, we present some numerical simulations.展开更多
Focusing on the three-dimensional guidance problem in case of target maneuvers and response delay of the autopilot, the missile guidance law utilizing active disturbance rejection control (ADRC) is proposed. Based o...Focusing on the three-dimensional guidance problem in case of target maneuvers and response delay of the autopilot, the missile guidance law utilizing active disturbance rejection control (ADRC) is proposed. Based on the nonlinear three-dimensional missile target engagement kinematics, the guidance model is es- tablished, The target acceleration is treated as a disturbance and the dynamics of the autopilot is considered by using a first-order model. A nonlinear continuous robust guidance law is designed by using a cascaded structure ADRC controller. In this method the disturbance is estimated by using the extended state observer (ESO) and compensated during each sampling period. Simulation results show that the proposed cascaded loop structure is a viable solution to the guidance law design and has strong robustness with respect to target maneuvers and response delay of the autopilot.展开更多
The flow separation control over an NACA 0015 airfoil using continuous alternating current(AC)dielectric barrier discharge(DBD)plasma actuator is investigated experimentally and numerically.This work is intended to re...The flow separation control over an NACA 0015 airfoil using continuous alternating current(AC)dielectric barrier discharge(DBD)plasma actuator is investigated experimentally and numerically.This work is intended to report some observations made from our experiment,to which little attention is paid in the previous studies,but which is thought to be important to the understanding of control of complex flow separation with AC DBD.To this end,the response of separated flow to AC plasma actuation is visualized through the time-resolved particle image velocimetry(PIV)measurement,whereas numerical simulation is carried out to complement the experiment.The flow control process at chord-based Reynolds number(Re)of 3.31×105 is investigated.It is found that the response of external flow to plasma forcing is delayed for up to tens of milliseconds and the delay time increases with angle of attack increasing.Also observed is that at the intermediate angle of attack near stall,the forced flow features a well re-organized flow pattern.However,for airfoil at high post-stall angle of attack,the already well suppressed flow field can recover to the massively separated flow state and then reattach to airfoil surface with the flow pattern fluctuating between the two states in an irregular manner.This is contrary to one’s first thought that the forced flow at any angles of attack will become well organized and regular,and reflects the complexity of flow separation control.展开更多
In 26 patients with confirmed primary verified gonarthrosis(PGA),a clinical and instrumental examination was conducted to evaluate the response energy osteopathy followed by statistical processing of the data.Three ty...In 26 patients with confirmed primary verified gonarthrosis(PGA),a clinical and instrumental examination was conducted to evaluate the response energy osteopathy followed by statistical processing of the data.Three types of the body’s response to treatment were identified:immediate,fast,and delayed,which,despite the different informative value of the data of the polyparametric study,allowed judging the effectiveness of the method used.展开更多
This study focuses on the Lower Yellow River(LYR),which has experienced continuous erosion since the operation of Xiaolangdi Reservoir in 1999,and its spatiotemporal variation process is complex.Based on the single-st...This study focuses on the Lower Yellow River(LYR),which has experienced continuous erosion since the operation of Xiaolangdi Reservoir in 1999,and its spatiotemporal variation process is complex.Based on the single-step mode of the Delayed Response Model(DRM),we proposed a calculation method for simulating the accumulated erosion and deposition volume in the LYR.The coefficient of determination R^(2)between the calculated and measured values from 2000 to 2020 is 0.99.Currently,the LYR is undergoing continuous erosion,however the erosion rate is gradually slowing down,and the difference between the equilibrium and calculated values of accumulated erosion and deposition volume gradually decreases,which means riverbed erosion has a tendency towards equilibrium.Additionally,we derive a formula to simulate the spatial distribution of the main channel accumulated erosion volume per unit river length in the LYR based on the non-equilibrium suspended sediment transport equation.The coefficient of determination R^(2)between the fitted values and measured values from 2003 to 2015 is approximately 0.98-0.99,with a relative error of approximately 6.2%.The findings in this research suggest that under the current background of decreasing sediment inflow and continuous erosion in the LYR,it takes approximately 3.0 years for the riverbed to achieve half of the erosion and deposition adjustment and approximately 13.0 years to achieve 95%of the adjustment.Moreover,the spatial distribution of accumulated main channel erosion volume in the LYR tends to become uniform with the continuous development of erosion.These results could provide a valuable reference for analysing the complex spatiotemporal variation process in the LYR.展开更多
The drainable porosity is one of the important parameters in the unsteady drainage formulas. Due to delayed gravity response the drainable porosity is a function of the rate of drawdown and the depth of water table. T...The drainable porosity is one of the important parameters in the unsteady drainage formulas. Due to delayed gravity response the drainable porosity is a function of the rate of drawdown and the depth of water table. The evaporation from groundwater plays an important role in lowering water table, in drainage design formulas it should be taken into account. Drainage equations considering evaporation from groundwater varying with water table depth and evaporation from water surface and involving constant drain-able porosity have been proposed by many authors. In this paper new formulas considering both delayed gravity yield and evaporation as a function of water table depth are developed and verified by experimental data.展开更多
In this paper, a hepatitis B viral infection model with a density-dependent proliferation rate of cytotoxic T lymphocyte (CTL) cells and immune response delay is investigated. By analyzing the model, we show that th...In this paper, a hepatitis B viral infection model with a density-dependent proliferation rate of cytotoxic T lymphocyte (CTL) cells and immune response delay is investigated. By analyzing the model, we show that the virus-free equilibrium is globally asymptotically stable, if the basic reproductive ratio is less than one and an endemic equilibrium exists if the basic reproductive ratio is greater than one. By using the stability switches criterion in the delay-differential system with delay-dependent parameters, we present that the stability of endemic equilibrium changes and eventually become stable as time delay increases. This means majority of hepatitis B infection would eventually become a chronic infection due to the immune response time delay is fairly long. Numerical simulations are carried out to explain the mathematical conclusions and biological implications.展开更多
Delayed response behaviour commonly occurs in conjunction with changes in riverbed scouring and sediment deposition and is a key component in understanding the intrinsic behaviour of reservoir siltation.Due to the com...Delayed response behaviour commonly occurs in conjunction with changes in riverbed scouring and sediment deposition and is a key component in understanding the intrinsic behaviour of reservoir siltation.Due to the complexity of the riverbed siltation process,the variability in the factors that influence siltation and the limitations of available research methods,the understanding of the delayed response behaviour of the sedimentation process in the Three Gorges Reservoir(TGR)is currently merely qualitative,and there is a lack of quantitative in-depth understanding.In addition,the effects of changes in water and sediment conditions on sedimentation in the TGR before and after cascade reservoir impoundment have not been quantified,so further studies are needed to provide a reference for better understanding the intrinsic behaviour of sedimentation in the TGR and the implications for the long-term use of the reservoir.Based on measured water and sediment data from 2003 to 2020 and topographic data from 2003 to 2018,a delayed response model for sedimentation in the TGR is constructed and combined with theoretical derivation to analyse the changes in the delayed response behaviour of the TGR before and after the impoundment of the cascade reservoirs and the associated causes.Then,the influence of changes in water and sediment conditions in previous years on sedimentation in the reservoir area is determined.The results show that(1)the improved delayed response model of sedimentation,which considers variations in external water and sediment conditions,reservoir scheduling,and riverbed adjustment rates,can effectively reflect the sedimentation process in the TGR,especially after the impoundment of the cascade reservoirs.Additionally,the typical section elevation delayed response model can simulate the section elevation adjustment process.(2)After the impoundment of the cascade reservoirs,the decreased variation in incoming water and sediment and more concentrated incoming sediment in the flood season increased the adjustment rate of the riverbed,and the delayed response time of TGR sedimentation was shortened from the previous 5 years to the previous 3 years.The impact of the previous water and sediment conditions is not negligible for the sedimentation process in the TGR,and the cumulative proportion of the previous influence reaches more than 60%.(3)The influence of incoming sediment on the sedimentation process and typical section adjustment process in the reservoir area increased after the impoundment of the cascade reservoirs,and the influence of the water level in front of the dam on sedimentation remained the largest.展开更多
To understand the non-equilibrium morphological adjustment of a river in response to environmental changes,it is essential to(i)accurately identify how past conditions of water and sediment have impacted current morph...To understand the non-equilibrium morphological adjustment of a river in response to environmental changes,it is essential to(i)accurately identify how past conditions of water and sediment have impacted current morphological adjustment of the river,and(ii)establish a corresponding simulation for non-equilibrium conditions.Based on discharge and suspended sediment concentration(SSC)as well as 82 cross-sectional data items for the Huayuankou-Lijin reach of the Lower Yellow River in the period 1965-2015,the process of adjustment of the geometry of the main channel(area,width,depth,and geomorphic coefficient),and its responses to changes in discharge and SSC for different reaches are statistically analyzed.Following this,a delayed response model(DRM)of the geometry of the main channel subjected to variations in discharge and SSC is established using a multi-step analytical model,with the discharge and SSC as the main controlling factors.The results show that the area,width,and depth of the main channel decreased initially,then increased,decreased again,and finally increased again.These features of the geometry of the channel were positively correlated with the 4-year moving average discharge and negatively with the 4-year moving average SSC.The geomorphic coefficient for the Huayuankou-Sunkou reach exhibited a trend of decrease,whereas that of the Sunkou-Lijin reach decreased initially,then increased,decreased again,and finally increased again.Except for the Huayuankou-Gaocun reach in 1965-1999,the coefficient was negatively correlated with the 4-year moving average discharge and positively with SSC.The simulated values of the morphological parameters of the main channel for all sub-reaches obtained using the DRM agreed well with the measured values.This indicates that the DRM can be used to simulate the process of response of the cross-sectional geometry of the main channel to variations in the water and sediment.The results of the model show that the adjustment of the geometry of the main channel was affected by the discharge and the SSC at present(30%)as well as for the previous 7 years(70%).The proposed model offers insights into the mechanism whereby past water and sediment influence the current morphological adjustment of the river,and provides an effective method for predicting the magnitude and trend of the geometry of the main channel under different flow conditions.展开更多
The Yellow River Estuary(YRE)alternatively experienced channel aggradation and degradation during the period 1990-2016.To study the variation in flood discharge capacity during the process of river bed evolution,bankf...The Yellow River Estuary(YRE)alternatively experienced channel aggradation and degradation during the period 1990-2016.To study the variation in flood discharge capacity during the process of river bed evolution,bankfull characteristic parameters were investigated on the basis of measured hydrological data and surveyed cross-sectional profiles,which was crucial for comprehending the processes and the key factors to cause these rapid changes.A reach-averaged method was presented in this study in order to calculate the characteristic bankfull parameters in the YRE,and this method integrated the geometric mean using the logarithmic transformation with a weighted mean based on the distance between the two successive sections.The reach-averaged bankfull parameters in the tail reach of the Yellow River Estuary(the Lijin-Xihekou reach)during the period 1990-2016 were then calculated.Calculated results indicated that the adoption of a concept of reach-averaged bankfull discharge was much more representative than the cross-sectional bankfull discharge,and the results also indicated that bankfull discharges decreased during the process of channel aggradation,and increased during the process of channel degradation.Finally,an empirical formula and a delayed response function were established between the reach-averaged bankfull discharge and the previous 4-year average fluvial erosion intensity during flood seasons,and both of them were adopted to reproduce the reach-averaged bankfull discharges,and calculated results showed high correlations(R^(2)>0.8)of these two methods.展开更多
基金the National Natural Science Foundation of China (Grant Nos. 62065009 and 61565008)Yunnan Fundamental Research Projects, China (Grant No. 2016FB009)。
文摘A viable strategy for enhancing photovoltaic performance is to comprehend the underlying quantum physical regime of charge transfer in a double quantum dots(DQD) photocell. This work explored the photovoltaic performance dependent spatially correlated fluctuation in a DQD photocell. The effects of spatially correlated fluctuation on charge transfer and output photovoltaic efficiency were explored in a proposed DQD photocell model. The results revealed that the charge transport process and the time to peak photovoltaic efficiency were both significantly delayed by the spatially correlated fluctuation, while the anti-spatially correlated fluctuation reduced the output peak photovoltaic efficiency. Further results revealed that the delayed response could be suppressed by gap difference and tunneling coefficient within two dots. Subsequent investigation demonstrated that the delayed response was caused by the spatial correlation fluctuation slowing the generative process of noise-induced coherence, which had previously been proven to improve the quantum photovoltaic performance in quantum photocells. And the reduced photovoltaic properties were verified by the damaged noise-induced coherence owing to the anti-spatial correlation fluctuation and a hotter thermal ambient environment. The discovery of delayed response generated by the spatially correlated fluctuations will deepen the understanding of quantum features of electron transfer, as well as promises to take our understanding even further concerning quantum techniques for high efficiency DQD solar cells.
基金Project supported by the National Basic Research Program of China (Grant No 2006CB705500)the National Natural Science Foundation of China (Grant No 10532060)+1 种基金the Natural Science Foundation of Ningbo (Grant Nos 2008A610022 and 2007A610050)K. C. Wang Magna Fund in Ningbo University, China
文摘This paper proposes two lattice traffic models by taking into account the drivers' delay in response. The lattice versions of the hydrodynamic model are described by the differential-difference equation and difference-difference equation, respectively. The stability conditions for the two models are obtained by using the linear stability theory. The modified KdV equation near the critical point is derived to describe the traffic jam by using the reductive perturbation method, and the kink-antikink soliton solutions related to the traffic density waves are obtained. The results show that the drivers' delay in sensing headway plays an important role in jamming transition.
基金supported by the National Natural Science Foundation of China (GrantNo. 40575026)Key Projects in the National Science &Technology Pillar Program in the Eleventh Five-year Plan Period (Grant No. 2006BAC03B03).
文摘Tropical zonally symmetric atmospheric warming occurs during ENSO's warm phase, and lags the equatorial east Pacific sea surface temperatures (SSTs) by 3-4 months. The role of the Indian and Atlantic oceans on the atmospheric delayed response has been pointed out by earlier studies. For 1951-2004, a regression analysis based on the observed SST data shows the western Pacific has a similarly important role as the Indian and Atlantic. Nevertheless, there is time mismatch of around 1-2 months between the zonally averaged tropical SST anomalies and the atmospheric temperature anomalies. It is expected that the tropospheric temperature should be controlled by diabatic heating forcing, which is sensitive primarily to SST anomalies over regions of high climatological SST, rather than to the tropical mean SST anomalies. To describe this mechanism, we propose a parameterization scheme of diabatic heating anomalies dependant on SST anomalies and climatological SST. The 1-2 month mismatch between tropical mean SST anomalies and air temperature anomalies is reconciled by the fact that the tropical mean heating anomalies are dominated by the SST anomalies over regions of high climatological SST, and lag the tropical mean SST anomalies by 1 month. The mechanism described by this parameterization scheme joins several physical processes of ENSO with reasonable time intervals. And the parameterized heating anomalies work better than the tropical mean SST anomalies for capturing the atmospheric temperature signal relative to ENSO.
基金Project supported by the National Natural Science Foundation of China(Nos.10471117 and 10771179)the Natural Science Foundation of Shandong University of Science and Technology(No.05g016)
文摘In this paper, we consider a new Monod type chemostat model with time delay and impulsive input concentration of the nutrient in a polluted environment. Using the discrete dynamical system determined by the stroboscopic map, we obtain a "microorganism-extinction" periodic solution. Further, we establish the sufficient conditions for the global attractivity of the microorganism-extinction periodic solution. Using new computational techniques for impulsive and delayed differential equation, we prove that the system is permanent under appropriate conditions. Our results show that time delay is "profitless".
文摘In this work, we investigate an HIV-1 infection model with a general incidence rate and delayed CTL immune response. The model admits three possible equilibria, an infection-free equilibrium <span><em>E</em></span><sup>*</sup><sub style="margin-left:-6px;">0</sub>, CTL-inactivated infection equilibrium <span><em>E</em></span><sup>*</sup><sub style="margin-left:-6px;">1</sub> and CTL-activated infection equilibrium <span><em>E</em></span><sup>*</sup><sub style="margin-left:-6px;">2</sub>. We prove that in the absence of CTL immune delay, the model has exactly the basic behaviour model, for all positive intracellular delays, the global dynamics are determined by two threshold parameters <em>R</em><sub>0</sub> and <em>R</em><sub>1</sub>, if <em>R</em><sub>0</sub> <span style="font-size:12px;white-space:nowrap;">≤</span> 1, <span><em>E</em></span><sup>*</sup><span style="margin-left:-6px;"><sub>0</sub> </span>is globally asymptotically stable, if <em>R</em><sub>1</sub> <span style="font-size:12px;white-space:nowrap;">≤</span> 1 < <em>R</em><sub>0</sub>, <span><em>E</em></span><sup>*</sup><span style="margin-left:-6px;"><sub>1</sub> </span>is globally asymptotically stable and if <em>R</em><sub>1</sub> >1, <span><em>E</em></span><sup>*</sup><span style="margin-left:-6px;"><sub>2</sub> </span>is globally asymptotically stable. But if the CTL immune response delay is different from zero, then the behaviour of the model at <span><em>E</em></span><sup>*</sup><span style="margin-left:-6px;"><sub>2</sub> </span>changes completely, although <em>R</em><sub>1</sub> > 1, a Hopf bifurcation at <span><em>E</em></span><sup>*</sup><span style="margin-left:-6px;"><sub>2</sub> </span>is established. In the end, we present some numerical simulations.
基金supported by the Aviation Science Foundation(2013ZC12004)
文摘Focusing on the three-dimensional guidance problem in case of target maneuvers and response delay of the autopilot, the missile guidance law utilizing active disturbance rejection control (ADRC) is proposed. Based on the nonlinear three-dimensional missile target engagement kinematics, the guidance model is es- tablished, The target acceleration is treated as a disturbance and the dynamics of the autopilot is considered by using a first-order model. A nonlinear continuous robust guidance law is designed by using a cascaded structure ADRC controller. In this method the disturbance is estimated by using the extended state observer (ESO) and compensated during each sampling period. Simulation results show that the proposed cascaded loop structure is a viable solution to the guidance law design and has strong robustness with respect to target maneuvers and response delay of the autopilot.
文摘The flow separation control over an NACA 0015 airfoil using continuous alternating current(AC)dielectric barrier discharge(DBD)plasma actuator is investigated experimentally and numerically.This work is intended to report some observations made from our experiment,to which little attention is paid in the previous studies,but which is thought to be important to the understanding of control of complex flow separation with AC DBD.To this end,the response of separated flow to AC plasma actuation is visualized through the time-resolved particle image velocimetry(PIV)measurement,whereas numerical simulation is carried out to complement the experiment.The flow control process at chord-based Reynolds number(Re)of 3.31×105 is investigated.It is found that the response of external flow to plasma forcing is delayed for up to tens of milliseconds and the delay time increases with angle of attack increasing.Also observed is that at the intermediate angle of attack near stall,the forced flow features a well re-organized flow pattern.However,for airfoil at high post-stall angle of attack,the already well suppressed flow field can recover to the massively separated flow state and then reattach to airfoil surface with the flow pattern fluctuating between the two states in an irregular manner.This is contrary to one’s first thought that the forced flow at any angles of attack will become well organized and regular,and reflects the complexity of flow separation control.
文摘In 26 patients with confirmed primary verified gonarthrosis(PGA),a clinical and instrumental examination was conducted to evaluate the response energy osteopathy followed by statistical processing of the data.Three types of the body’s response to treatment were identified:immediate,fast,and delayed,which,despite the different informative value of the data of the polyparametric study,allowed judging the effectiveness of the method used.
基金National Natural Science Foundation of China,No.U2243218。
文摘This study focuses on the Lower Yellow River(LYR),which has experienced continuous erosion since the operation of Xiaolangdi Reservoir in 1999,and its spatiotemporal variation process is complex.Based on the single-step mode of the Delayed Response Model(DRM),we proposed a calculation method for simulating the accumulated erosion and deposition volume in the LYR.The coefficient of determination R^(2)between the calculated and measured values from 2000 to 2020 is 0.99.Currently,the LYR is undergoing continuous erosion,however the erosion rate is gradually slowing down,and the difference between the equilibrium and calculated values of accumulated erosion and deposition volume gradually decreases,which means riverbed erosion has a tendency towards equilibrium.Additionally,we derive a formula to simulate the spatial distribution of the main channel accumulated erosion volume per unit river length in the LYR based on the non-equilibrium suspended sediment transport equation.The coefficient of determination R^(2)between the fitted values and measured values from 2003 to 2015 is approximately 0.98-0.99,with a relative error of approximately 6.2%.The findings in this research suggest that under the current background of decreasing sediment inflow and continuous erosion in the LYR,it takes approximately 3.0 years for the riverbed to achieve half of the erosion and deposition adjustment and approximately 13.0 years to achieve 95%of the adjustment.Moreover,the spatial distribution of accumulated main channel erosion volume in the LYR tends to become uniform with the continuous development of erosion.These results could provide a valuable reference for analysing the complex spatiotemporal variation process in the LYR.
基金the Science Fundation of the National Education Commission
文摘The drainable porosity is one of the important parameters in the unsteady drainage formulas. Due to delayed gravity response the drainable porosity is a function of the rate of drawdown and the depth of water table. The evaporation from groundwater plays an important role in lowering water table, in drainage design formulas it should be taken into account. Drainage equations considering evaporation from groundwater varying with water table depth and evaporation from water surface and involving constant drain-able porosity have been proposed by many authors. In this paper new formulas considering both delayed gravity yield and evaporation as a function of water table depth are developed and verified by experimental data.
基金Acknowledgments This research is supported by National Natural Science Foundation of China (Nos. 11401117 and 11201236) and the NSF of the Guangxi Higher Education Committee of China (YB2014203) and Guangxi Natural Science Foundation (No. 2012GXNSFAA053011) and Colleges and the Doctoral Fund of Guangxi University of Science and Technology (No. 13Z14).
文摘In this paper, a hepatitis B viral infection model with a density-dependent proliferation rate of cytotoxic T lymphocyte (CTL) cells and immune response delay is investigated. By analyzing the model, we show that the virus-free equilibrium is globally asymptotically stable, if the basic reproductive ratio is less than one and an endemic equilibrium exists if the basic reproductive ratio is greater than one. By using the stability switches criterion in the delay-differential system with delay-dependent parameters, we present that the stability of endemic equilibrium changes and eventually become stable as time delay increases. This means majority of hepatitis B infection would eventually become a chronic infection due to the immune response time delay is fairly long. Numerical simulations are carried out to explain the mathematical conclusions and biological implications.
基金National Key R&D Program of China,No.2017YFC0405202National Natural Science Foundation of China,No.U2040218。
文摘Delayed response behaviour commonly occurs in conjunction with changes in riverbed scouring and sediment deposition and is a key component in understanding the intrinsic behaviour of reservoir siltation.Due to the complexity of the riverbed siltation process,the variability in the factors that influence siltation and the limitations of available research methods,the understanding of the delayed response behaviour of the sedimentation process in the Three Gorges Reservoir(TGR)is currently merely qualitative,and there is a lack of quantitative in-depth understanding.In addition,the effects of changes in water and sediment conditions on sedimentation in the TGR before and after cascade reservoir impoundment have not been quantified,so further studies are needed to provide a reference for better understanding the intrinsic behaviour of sedimentation in the TGR and the implications for the long-term use of the reservoir.Based on measured water and sediment data from 2003 to 2020 and topographic data from 2003 to 2018,a delayed response model for sedimentation in the TGR is constructed and combined with theoretical derivation to analyse the changes in the delayed response behaviour of the TGR before and after the impoundment of the cascade reservoirs and the associated causes.Then,the influence of changes in water and sediment conditions in previous years on sedimentation in the reservoir area is determined.The results show that(1)the improved delayed response model of sedimentation,which considers variations in external water and sediment conditions,reservoir scheduling,and riverbed adjustment rates,can effectively reflect the sedimentation process in the TGR,especially after the impoundment of the cascade reservoirs.Additionally,the typical section elevation delayed response model can simulate the section elevation adjustment process.(2)After the impoundment of the cascade reservoirs,the decreased variation in incoming water and sediment and more concentrated incoming sediment in the flood season increased the adjustment rate of the riverbed,and the delayed response time of TGR sedimentation was shortened from the previous 5 years to the previous 3 years.The impact of the previous water and sediment conditions is not negligible for the sedimentation process in the TGR,and the cumulative proportion of the previous influence reaches more than 60%.(3)The influence of incoming sediment on the sedimentation process and typical section adjustment process in the reservoir area increased after the impoundment of the cascade reservoirs,and the influence of the water level in front of the dam on sedimentation remained the largest.
基金Key Program of National Natural Science Foundation of China,No.51639005Central Public-interest Scientific Institution Basal Research Fund of China,No.CKSF2019214/HL,No.CKSF2019411/HL。
文摘To understand the non-equilibrium morphological adjustment of a river in response to environmental changes,it is essential to(i)accurately identify how past conditions of water and sediment have impacted current morphological adjustment of the river,and(ii)establish a corresponding simulation for non-equilibrium conditions.Based on discharge and suspended sediment concentration(SSC)as well as 82 cross-sectional data items for the Huayuankou-Lijin reach of the Lower Yellow River in the period 1965-2015,the process of adjustment of the geometry of the main channel(area,width,depth,and geomorphic coefficient),and its responses to changes in discharge and SSC for different reaches are statistically analyzed.Following this,a delayed response model(DRM)of the geometry of the main channel subjected to variations in discharge and SSC is established using a multi-step analytical model,with the discharge and SSC as the main controlling factors.The results show that the area,width,and depth of the main channel decreased initially,then increased,decreased again,and finally increased again.These features of the geometry of the channel were positively correlated with the 4-year moving average discharge and negatively with the 4-year moving average SSC.The geomorphic coefficient for the Huayuankou-Sunkou reach exhibited a trend of decrease,whereas that of the Sunkou-Lijin reach decreased initially,then increased,decreased again,and finally increased again.Except for the Huayuankou-Gaocun reach in 1965-1999,the coefficient was negatively correlated with the 4-year moving average discharge and positively with SSC.The simulated values of the morphological parameters of the main channel for all sub-reaches obtained using the DRM agreed well with the measured values.This indicates that the DRM can be used to simulate the process of response of the cross-sectional geometry of the main channel to variations in the water and sediment.The results of the model show that the adjustment of the geometry of the main channel was affected by the discharge and the SSC at present(30%)as well as for the previous 7 years(70%).The proposed model offers insights into the mechanism whereby past water and sediment influence the current morphological adjustment of the river,and provides an effective method for predicting the magnitude and trend of the geometry of the main channel under different flow conditions.
基金supported by the Program of the National Key Research and Development Plan(No.2017YFC0405501)supported partly by the National Natural Science Foundation of China(Grant Nos.51725902,51579186,51809196).
文摘The Yellow River Estuary(YRE)alternatively experienced channel aggradation and degradation during the period 1990-2016.To study the variation in flood discharge capacity during the process of river bed evolution,bankfull characteristic parameters were investigated on the basis of measured hydrological data and surveyed cross-sectional profiles,which was crucial for comprehending the processes and the key factors to cause these rapid changes.A reach-averaged method was presented in this study in order to calculate the characteristic bankfull parameters in the YRE,and this method integrated the geometric mean using the logarithmic transformation with a weighted mean based on the distance between the two successive sections.The reach-averaged bankfull parameters in the tail reach of the Yellow River Estuary(the Lijin-Xihekou reach)during the period 1990-2016 were then calculated.Calculated results indicated that the adoption of a concept of reach-averaged bankfull discharge was much more representative than the cross-sectional bankfull discharge,and the results also indicated that bankfull discharges decreased during the process of channel aggradation,and increased during the process of channel degradation.Finally,an empirical formula and a delayed response function were established between the reach-averaged bankfull discharge and the previous 4-year average fluvial erosion intensity during flood seasons,and both of them were adopted to reproduce the reach-averaged bankfull discharges,and calculated results showed high correlations(R^(2)>0.8)of these two methods.