The problem of the stability for a class of stochastic systems with time-varying interval delay and the norm-bounded uncertainty is investigated. Utilizing the information of both the lower and the upper bounds of the...The problem of the stability for a class of stochastic systems with time-varying interval delay and the norm-bounded uncertainty is investigated. Utilizing the information of both the lower and the upper bounds of the interval time-varying delay, a novel Lyapunov-Krasovskii functional is constructed. The delay-dependent sufficient criteria are derived in terms of linear matrix inequalities (LMIs), which can be easily checked by the LMI in the Matlab toolbox. Based on the Jensen integral inequality, neither model transformations nor bounding techniques for cross terms is employed, so the derived criteria are less conservative than the existing results. Meanwhile, the computational complexity of the obtained stability conditions is reduced because no redundant matrix is introduced. A numerical example is given to show the effectiveness and the benefits of the proposed method.展开更多
It is well-recognized that a transfer system response delay that reduces the test stability inevitably exists in real-time dynamic hybrid testing (RTDHT). This paper focuses on the delay-dependent stability and adde...It is well-recognized that a transfer system response delay that reduces the test stability inevitably exists in real-time dynamic hybrid testing (RTDHT). This paper focuses on the delay-dependent stability and added damping of SDOF systems in RTDHT. The exponential delay term is transferred into a rational fraction by the Pad6 approximation, and the delay-dependent stability conditions and instability mechanism of SDOF RTDHT systems are investigated by the root locus technique. First, the stability conditions are discussed separately for the cases of stiffness, mass, and damping experimental substructure. The use of root locus plots shows that the added damping effect and instability mechanism for mass are different from those for stiffness. For the stiffness experimental substructure case, the instability results from the inherent mode because of an obvious negative damping effect of the delay. For the mass case, the delay introduces an equivalent positive damping into the inherent mode, and instability occurs at an added high frequency mode. Then, the compound stability condition is investigated for a general case and the results show that the mass ratio may have both upper and lower limits to remain stable. Finally, a high-emulational virtual shaking table model is built to validate the stability conclusions.展开更多
In this paper, delay-dependent stability analysis and robust stabilization for uncertain singular time-delay systems are addressed. By using Jensen integral inequality, an improved delay-dependent criterion of admissi...In this paper, delay-dependent stability analysis and robust stabilization for uncertain singular time-delay systems are addressed. By using Jensen integral inequality, an improved delay-dependent criterion of admissibility for singular time-delay systems is proposed in terms of linear matrix inequality (LMI). Our new proposed criterion is less conservative and the numerical complexity is smaller than the existing ones. Based on this criterion, a state feedback controller is designed to ensure that the uncertain singular time-delay system is admissible. Finally, three numerical examples are employed to illustrate the effectiveness of the proposed method.展开更多
The problem of delay-dependent criteria for the robust stability of neutral systems with time-varying structured uncertainties and identi-cal neutral-delay and discrete-delay is concerned. A criterion for nominal syst...The problem of delay-dependent criteria for the robust stability of neutral systems with time-varying structured uncertainties and identi-cal neutral-delay and discrete-delay is concerned. A criterion for nominal systems is presented by taking the relationship between the terms in the Leibniz-Newton formula into account, which is described by some free-weighting matrices. In addition, this criterion is extended to robust stability of the systems with time-varying structured uncertainties. All of the criteria are based on linear matrix inequality such that it is easy to calculate the upper bound of the time-delay and the free-weighting matrices. Numerical examples illustrate the effectiveness and the improvement over the existing results.展开更多
This paper investigates the problem of delay-dependent robust stabilization for uncertain singular systems with discrete and distributed delays in terms of linear matrix inequality (LMI) approach. Based on a delay-d...This paper investigates the problem of delay-dependent robust stabilization for uncertain singular systems with discrete and distributed delays in terms of linear matrix inequality (LMI) approach. Based on a delay-dependent stability condition for the nominal system, a state feedback controller is designed, which guarantees the resultant closed- loop system to be robustly stable. An explicit expression for the desired controller is also given by solving a set of matrix inequalities. Some numerical examples are provided to illustrate the less conservativeness of the proposed methods.展开更多
The delay-dependent robust stability of uncertain linear neutral systems with delays is investigated. Both discrete-delay-dependent/neutral-delay-independent and neutral-/discrete- delay-dependent stability criteria w...The delay-dependent robust stability of uncertain linear neutral systems with delays is investigated. Both discrete-delay-dependent/neutral-delay-independent and neutral-/discrete- delay-dependent stability criteria will be developed. The proposed stability criteria are formulated in the form of linear matrix inequalities and it is easy to check the robust stability of the considered systems. By introducing certain Lyapunov-Krasovskii functional the mathematical development of our result avoids model transformation and bounding for cross terms, which lead to conservatism. Finally, numerical example is given to indicate the improvement over some existing results.展开更多
This paper focuses on the delay-dependent stability for a kind of Markovian jump time-delay systems(MJTDSs),whose transition rates are incompletely known. In order to reduce the computational complexity and achieve be...This paper focuses on the delay-dependent stability for a kind of Markovian jump time-delay systems(MJTDSs),whose transition rates are incompletely known. In order to reduce the computational complexity and achieve better performance,auxiliary function-based double integral inequality is combined with extended Wirtinger's inequality and Jensen inequality to deal with the double integral and the triple integral in augmented Lyapunov-Krasovskii function(ALKF) and their weak infinitesimal generator respectively, the more accurate approximation bounds with a fewer variables are derived. As a result, less conservative stability criteria are proposed in this paper. Finally,numerical examples are given to show the effectiveness and the merits of the proposed method.展开更多
The stability and stabilization of a class of linear switched time-varying delay systems are investigated. A piecewise quadratic Lyapunov function (PWQLF) is constructed and is used to obtain the stability condition...The stability and stabilization of a class of linear switched time-varying delay systems are investigated. A piecewise quadratic Lyapunov function (PWQLF) is constructed and is used to obtain the stability conditions based on the linear matrix inequalities (LMIs). The stabilizing controller for this class of system is then designed and the solution of the desired controller can be obtained by a cone complementary linearization algorithm. Numerical examples are provided to illustrate the less conservativeness of the new stability and the validity of the controller design procedures.展开更多
This article considers delay dependent decentralized H∞ filtering for a class of uncertain interconnected systems, where the uncertainties are assumed to be time varying and satisfy the norm-bounded conditions. First...This article considers delay dependent decentralized H∞ filtering for a class of uncertain interconnected systems, where the uncertainties are assumed to be time varying and satisfy the norm-bounded conditions. First, combining the Lyapunov-Krasovskii functional approach and the delay integral inequality of matrices, a sufficient condition of the existence of the robust decentralized H∞ filter is derived, which makes the error systems asymptotically stable and satisfies the H∞ norm of the transfer function from noise input to error output less than the specified up-bound on the basis of the form of uncertainties. Then, the above sufficient condition is transformed to a system of easily solvable LMIs via a series of equivalent transformation. Finally, the numerical simulation shows the efficiency of the main results.展开更多
This paper deals with the problem of delay-dependent robust stability for a class of switched Hopfield neural networks with time-varying structured uncertainties and time-varying delay. Some Lyapunov-KrasoVskii functi...This paper deals with the problem of delay-dependent robust stability for a class of switched Hopfield neural networks with time-varying structured uncertainties and time-varying delay. Some Lyapunov-KrasoVskii functionals are constructed and the linear matrix inequality (LMI) approach and free weighting matrix method are employed to devise some delay-dependent stability criteria which guarantee the existence, uniqueness and global exponential stability of the equilibrium point for all admissible parametric uncertainties. By using Leibniz-Newton formula, free weighting matrices are employed to express this relationship, which implies that the new criteria are less conservative than existing ones. Some examples suggest that the proposed criteria are effective and are an improvement over previous ones.展开更多
The problem of delay-dependent robust stability for systems with time-varying delay has been considered. By using the S-procedure and the Park's inequality in the recent issue, a delay-dependent robust stability c...The problem of delay-dependent robust stability for systems with time-varying delay has been considered. By using the S-procedure and the Park's inequality in the recent issue, a delay-dependent robust stability criterion which is less conservative than the previous results has been derived for time-delay systems with time-varying structured uncertainties. The same idea has also been easily extended to the systems with nonlinear perturbations. Numerical examples illustrated the effectiveness and the improvement of the proposed approach. Keywords Delay-dependent criteria - Robust stability - Time-varying structured uncertainties - Nonlinear perturbations - Linear matrix inequality This work was supported by the Doctor Subject Foundation of China (No. 2000053303).展开更多
This paper considers the guaranteed cost control problem for a class of uncertain linear systems with both state and input delays. By representing the time-delay system in the descriptor system form and using a recent...This paper considers the guaranteed cost control problem for a class of uncertain linear systems with both state and input delays. By representing the time-delay system in the descriptor system form and using a recent result on bounding of cross products of vectors, we obtain new delay-dependent sufficient conditions for the existence of the guaranteed cost controller in terms of linear matrix inequalities. Two examples are presented which show the effectiveness of our approach.展开更多
This paper deals with the stability of linear multistep methods for multidimensional differential systems with distributed delays. The delay-dependent stability of linear multistep methods with compound quadrature rul...This paper deals with the stability of linear multistep methods for multidimensional differential systems with distributed delays. The delay-dependent stability of linear multistep methods with compound quadrature rules is studied. Several new sufficient criteria of delay-dependent stability are obtained by means of the argument principle. An algorithm is provided to check delay-dependent stability. An example that illustrates the effectiveness of the derived theoretical results is given.展开更多
The problem of delay-dependent stability and passivity for linear neutral systems is discussed. By constructing a novel type Lyapunov-krasovskii functional, a new delay-dependent passivity criterion is presented in te...The problem of delay-dependent stability and passivity for linear neutral systems is discussed. By constructing a novel type Lyapunov-krasovskii functional, a new delay-dependent passivity criterion is presented in terms of linear matrix inequalities (LMIs). Model transformation, bounding for cross terms and selecting free weighting matrices [12-14] are not required in the arguments. Numerical examples show that the proposed criteria are available and less conservative than existing results .展开更多
This paper deals with the problem of delay-dependent stability and stabilization for networked control systems(NCSs)with multiple time-delays. In view of multi-input and multi-output(MIMO) NCSs with many independe...This paper deals with the problem of delay-dependent stability and stabilization for networked control systems(NCSs)with multiple time-delays. In view of multi-input and multi-output(MIMO) NCSs with many independent sensors and actuators, a continuous time model with distributed time-delays is proposed. Utilizing the Lyapunov stability theory combined with linear matrix inequalities(LMIs) techniques, some new delay-dependent stability criteria for NCSs in terms of generalized Lyapunov matrix equation and LMIs are derived. Stabilizing controller via state feedback is formulated by solving a set of LMIs. Compared with the reported methods, the proposed methods give a less conservative delay bound and more general results. Numerical example and simulation show that the methods are less conservative and more effective.展开更多
This paper examines the delay-dependent H-infinity control problem for discrete-time linear systems with time-varying state delays and norm-bounded uncertainties. A new inequality for the finite sum of quadratic terms...This paper examines the delay-dependent H-infinity control problem for discrete-time linear systems with time-varying state delays and norm-bounded uncertainties. A new inequality for the finite sum of quadratic terms is first established. Then, some new delay-dependent criteria are derived by employing the new inequality to guarantee the robust stability of a closed-loop system with a prescribed H-infinity norm bound for all admissible uncertainties and bounded time-vary delays. A numerical example demonstrates that the proposed method is an improvement over existing ones.展开更多
In this paper, H ∞ state feedback control with delay information for discrete systems with multi-time-delay is discussed. Making use of linear matrix inequality (LMI) approach, a time-delay-dependent criterion for a ...In this paper, H ∞ state feedback control with delay information for discrete systems with multi-time-delay is discussed. Making use of linear matrix inequality (LMI) approach, a time-delay-dependent criterion for a discrete system with multi-time-delay to satisfy H ∞ performance indices is induced, and then a strategy for H ∞ state feedback control with delay values for plant with multi-time-delay is obtained. By solving corresponding LMI, a delay-dependent state feedback controller satisfying H ∞ performance indices is designed. Finally, a simulation example demonstrates the validity of the proposed approach. Keywords Multi-time-delay - discrete time system - LMI - delay-dependent - H ∞ control Bai-Da Qu received B. S. degree in electrical automation from Fuxin Mining Institute, China in 1982, M. Eng. degree from Hefei University of Polytechnology in 1990, and Ph.D from Northerneastern University in 1999. He was an electro-mechanical engineer at Erdaohezi Mine, Heilongjiang, China from 1982 to 1990, a Lecturer, Senior Engineer, Associate Professor and Professor in Shenyang Institue of Technology from 1990 to 2002. He is currently a professor in Communication and Control Engineering School, Southern Yangtze University. His research interests include control theory and applications (robust control, H ∞ control, time-delay systems, complex systems), system engineering (modeling, analysis and simulation, MIS,CMIS), power-electronics and electrical driving, signal detecting and process, industrial automation.展开更多
This paper focuses on the design problem of a memoryless state feedback robust H-infinity controller for a class of uncertain neutral systems. By using a newly established integral inequality, a new delay-dependent bo...This paper focuses on the design problem of a memoryless state feedback robust H-infinity controller for a class of uncertain neutral systems. By using a newly established integral inequality, a new delay-dependent bounded real lemma for such systems is derived without involving a fixed model transformation. Furthermore, new delay-dependent sufficient conditions for the existence of robust H-infinity controllers are presented in terms of nonlinear matrix inequalities. A design procedure involving an iterative algorithm is also proposed to design such controllers. Numerical examples are given to demonstrate the less conservatism of the proposed method.展开更多
The robust passivity control problem is addressed for a class of uncertain delayed systems with timevarying delay. The parameter uncertainties are norm-bounded. First, the delay-dependent stability sufficient conditio...The robust passivity control problem is addressed for a class of uncertain delayed systems with timevarying delay. The parameter uncertainties are norm-bounded. First, the delay-dependent stability sufficient condition is obtained for the nominal system, and then, based-on the former, the delay-dependent robust passivity criteria is provided and the corresponding controller is designed in terms of linear matrix inequalities. Finally, a numerical example is given to demonstrate the validity of the proposed approach.展开更多
This paper deals with the problem of stability for systems with delay varying in an interval.A new Lyapunov functional,which makes use of the information of both the lower and upper bounds of the interval time-varying...This paper deals with the problem of stability for systems with delay varying in an interval.A new Lyapunov functional,which makes use of the information of both the lower and upper bounds of the interval time-varying delay,is proposed to derive some new stability criteria.Furthermore,the relationship of the time-varying delay and its lower bound and upper bound is taken into account.As a result,some less conservative delay-dependent stability criteria are obtained without ignoring any useful information in the derivative of Lyapunov functional,which are established in the forms of linear matrix inequalities.Numerical examples are provided to show that the obtained results are better than existing ones.展开更多
基金The National Natural Science Foundation of China(No.60874030,60574006,60404006)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.07KJB510125)
文摘The problem of the stability for a class of stochastic systems with time-varying interval delay and the norm-bounded uncertainty is investigated. Utilizing the information of both the lower and the upper bounds of the interval time-varying delay, a novel Lyapunov-Krasovskii functional is constructed. The delay-dependent sufficient criteria are derived in terms of linear matrix inequalities (LMIs), which can be easily checked by the LMI in the Matlab toolbox. Based on the Jensen integral inequality, neither model transformations nor bounding techniques for cross terms is employed, so the derived criteria are less conservative than the existing results. Meanwhile, the computational complexity of the obtained stability conditions is reduced because no redundant matrix is introduced. A numerical example is given to show the effectiveness and the benefits of the proposed method.
基金State Key Laboratory of Hydroscience and Engineering Under Grant No.2008-TC-2National Natural Science Foundation of China Under Grant No.90510018,50779021 and 90715041
文摘It is well-recognized that a transfer system response delay that reduces the test stability inevitably exists in real-time dynamic hybrid testing (RTDHT). This paper focuses on the delay-dependent stability and added damping of SDOF systems in RTDHT. The exponential delay term is transferred into a rational fraction by the Pad6 approximation, and the delay-dependent stability conditions and instability mechanism of SDOF RTDHT systems are investigated by the root locus technique. First, the stability conditions are discussed separately for the cases of stiffness, mass, and damping experimental substructure. The use of root locus plots shows that the added damping effect and instability mechanism for mass are different from those for stiffness. For the stiffness experimental substructure case, the instability results from the inherent mode because of an obvious negative damping effect of the delay. For the mass case, the delay introduces an equivalent positive damping into the inherent mode, and instability occurs at an added high frequency mode. Then, the compound stability condition is investigated for a general case and the results show that the mass ratio may have both upper and lower limits to remain stable. Finally, a high-emulational virtual shaking table model is built to validate the stability conclusions.
基金supported by National Natural Science Foundation of China (No.60904009,No.60974004)
文摘In this paper, delay-dependent stability analysis and robust stabilization for uncertain singular time-delay systems are addressed. By using Jensen integral inequality, an improved delay-dependent criterion of admissibility for singular time-delay systems is proposed in terms of linear matrix inequality (LMI). Our new proposed criterion is less conservative and the numerical complexity is smaller than the existing ones. Based on this criterion, a state feedback controller is designed to ensure that the uncertain singular time-delay system is admissible. Finally, three numerical examples are employed to illustrate the effectiveness of the proposed method.
文摘The problem of delay-dependent criteria for the robust stability of neutral systems with time-varying structured uncertainties and identi-cal neutral-delay and discrete-delay is concerned. A criterion for nominal systems is presented by taking the relationship between the terms in the Leibniz-Newton formula into account, which is described by some free-weighting matrices. In addition, this criterion is extended to robust stability of the systems with time-varying structured uncertainties. All of the criteria are based on linear matrix inequality such that it is easy to calculate the upper bound of the time-delay and the free-weighting matrices. Numerical examples illustrate the effectiveness and the improvement over the existing results.
基金the National Natural Science Foundation of China (No.60503027)
文摘This paper investigates the problem of delay-dependent robust stabilization for uncertain singular systems with discrete and distributed delays in terms of linear matrix inequality (LMI) approach. Based on a delay-dependent stability condition for the nominal system, a state feedback controller is designed, which guarantees the resultant closed- loop system to be robustly stable. An explicit expression for the desired controller is also given by solving a set of matrix inequalities. Some numerical examples are provided to illustrate the less conservativeness of the proposed methods.
基金This work was supported by the National Natural Science Foundation of China(No. 60473120).
文摘The delay-dependent robust stability of uncertain linear neutral systems with delays is investigated. Both discrete-delay-dependent/neutral-delay-independent and neutral-/discrete- delay-dependent stability criteria will be developed. The proposed stability criteria are formulated in the form of linear matrix inequalities and it is easy to check the robust stability of the considered systems. By introducing certain Lyapunov-Krasovskii functional the mathematical development of our result avoids model transformation and bounding for cross terms, which lead to conservatism. Finally, numerical example is given to indicate the improvement over some existing results.
基金supported by the National Natural Science Foundation of China(61403001,61572032)in part by the Natural Science Foundation of Anhui Province of China(1508085QF136)in part by the Natural Science Foundation of Universities of Anhui Province of China(KJ2016A058)
文摘This paper focuses on the delay-dependent stability for a kind of Markovian jump time-delay systems(MJTDSs),whose transition rates are incompletely known. In order to reduce the computational complexity and achieve better performance,auxiliary function-based double integral inequality is combined with extended Wirtinger's inequality and Jensen inequality to deal with the double integral and the triple integral in augmented Lyapunov-Krasovskii function(ALKF) and their weak infinitesimal generator respectively, the more accurate approximation bounds with a fewer variables are derived. As a result, less conservative stability criteria are proposed in this paper. Finally,numerical examples are given to show the effectiveness and the merits of the proposed method.
基金the National Natural Science Foundation of China (69874008).
文摘The stability and stabilization of a class of linear switched time-varying delay systems are investigated. A piecewise quadratic Lyapunov function (PWQLF) is constructed and is used to obtain the stability conditions based on the linear matrix inequalities (LMIs). The stabilizing controller for this class of system is then designed and the solution of the desired controller can be obtained by a cone complementary linearization algorithm. Numerical examples are provided to illustrate the less conservativeness of the new stability and the validity of the controller design procedures.
基金the National Natural Science Foundation of China (60634020)the Hunan Provincial Natural Science Foundation of China (07JJ6138)+1 种基金the Postdoctoral Science Foundation of China (20060390883)the China Ph.D. Discipline Special Foundation (20050533028).
文摘This article considers delay dependent decentralized H∞ filtering for a class of uncertain interconnected systems, where the uncertainties are assumed to be time varying and satisfy the norm-bounded conditions. First, combining the Lyapunov-Krasovskii functional approach and the delay integral inequality of matrices, a sufficient condition of the existence of the robust decentralized H∞ filter is derived, which makes the error systems asymptotically stable and satisfies the H∞ norm of the transfer function from noise input to error output less than the specified up-bound on the basis of the form of uncertainties. Then, the above sufficient condition is transformed to a system of easily solvable LMIs via a series of equivalent transformation. Finally, the numerical simulation shows the efficiency of the main results.
基金This work is supported by the National Natural Science Foundation of China (No.60674026)the Key Research Foundation of Science and Technology of the Ministry of Education of China (No.107058).
文摘This paper deals with the problem of delay-dependent robust stability for a class of switched Hopfield neural networks with time-varying structured uncertainties and time-varying delay. Some Lyapunov-KrasoVskii functionals are constructed and the linear matrix inequality (LMI) approach and free weighting matrix method are employed to devise some delay-dependent stability criteria which guarantee the existence, uniqueness and global exponential stability of the equilibrium point for all admissible parametric uncertainties. By using Leibniz-Newton formula, free weighting matrices are employed to express this relationship, which implies that the new criteria are less conservative than existing ones. Some examples suggest that the proposed criteria are effective and are an improvement over previous ones.
文摘The problem of delay-dependent robust stability for systems with time-varying delay has been considered. By using the S-procedure and the Park's inequality in the recent issue, a delay-dependent robust stability criterion which is less conservative than the previous results has been derived for time-delay systems with time-varying structured uncertainties. The same idea has also been easily extended to the systems with nonlinear perturbations. Numerical examples illustrated the effectiveness and the improvement of the proposed approach. Keywords Delay-dependent criteria - Robust stability - Time-varying structured uncertainties - Nonlinear perturbations - Linear matrix inequality This work was supported by the Doctor Subject Foundation of China (No. 2000053303).
基金This work was supported by the National Natural Science Foundation of China (No. 10461001).
文摘This paper considers the guaranteed cost control problem for a class of uncertain linear systems with both state and input delays. By representing the time-delay system in the descriptor system form and using a recent result on bounding of cross products of vectors, we obtain new delay-dependent sufficient conditions for the existence of the guaranteed cost controller in terms of linear matrix inequalities. Two examples are presented which show the effectiveness of our approach.
基金Project supported by the National Natural Science Foundation of China(No.11471217)
文摘This paper deals with the stability of linear multistep methods for multidimensional differential systems with distributed delays. The delay-dependent stability of linear multistep methods with compound quadrature rules is studied. Several new sufficient criteria of delay-dependent stability are obtained by means of the argument principle. An algorithm is provided to check delay-dependent stability. An example that illustrates the effectiveness of the derived theoretical results is given.
基金This work was supported by the National Natural Science Foundation of China (No.60474003).
文摘The problem of delay-dependent stability and passivity for linear neutral systems is discussed. By constructing a novel type Lyapunov-krasovskii functional, a new delay-dependent passivity criterion is presented in terms of linear matrix inequalities (LMIs). Model transformation, bounding for cross terms and selecting free weighting matrices [12-14] are not required in the arguments. Numerical examples show that the proposed criteria are available and less conservative than existing results .
基金This work was supported by the National Natural Science Foundation of China(No. 60275013).
文摘This paper deals with the problem of delay-dependent stability and stabilization for networked control systems(NCSs)with multiple time-delays. In view of multi-input and multi-output(MIMO) NCSs with many independent sensors and actuators, a continuous time model with distributed time-delays is proposed. Utilizing the Lyapunov stability theory combined with linear matrix inequalities(LMIs) techniques, some new delay-dependent stability criteria for NCSs in terms of generalized Lyapunov matrix equation and LMIs are derived. Stabilizing controller via state feedback is formulated by solving a set of LMIs. Compared with the reported methods, the proposed methods give a less conservative delay bound and more general results. Numerical example and simulation show that the methods are less conservative and more effective.
基金This work was partially supported by the National Science Foundation of China (No. 60425310, 60574014), the Doctor Subject Foundation of China(No. 20050533015) and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of the Ministryof Education, P. R. China (TRAPOYT).
文摘This paper examines the delay-dependent H-infinity control problem for discrete-time linear systems with time-varying state delays and norm-bounded uncertainties. A new inequality for the finite sum of quadratic terms is first established. Then, some new delay-dependent criteria are derived by employing the new inequality to guarantee the robust stability of a closed-loop system with a prescribed H-infinity norm bound for all admissible uncertainties and bounded time-vary delays. A numerical example demonstrates that the proposed method is an improvement over existing ones.
文摘In this paper, H ∞ state feedback control with delay information for discrete systems with multi-time-delay is discussed. Making use of linear matrix inequality (LMI) approach, a time-delay-dependent criterion for a discrete system with multi-time-delay to satisfy H ∞ performance indices is induced, and then a strategy for H ∞ state feedback control with delay values for plant with multi-time-delay is obtained. By solving corresponding LMI, a delay-dependent state feedback controller satisfying H ∞ performance indices is designed. Finally, a simulation example demonstrates the validity of the proposed approach. Keywords Multi-time-delay - discrete time system - LMI - delay-dependent - H ∞ control Bai-Da Qu received B. S. degree in electrical automation from Fuxin Mining Institute, China in 1982, M. Eng. degree from Hefei University of Polytechnology in 1990, and Ph.D from Northerneastern University in 1999. He was an electro-mechanical engineer at Erdaohezi Mine, Heilongjiang, China from 1982 to 1990, a Lecturer, Senior Engineer, Associate Professor and Professor in Shenyang Institue of Technology from 1990 to 2002. He is currently a professor in Communication and Control Engineering School, Southern Yangtze University. His research interests include control theory and applications (robust control, H ∞ control, time-delay systems, complex systems), system engineering (modeling, analysis and simulation, MIS,CMIS), power-electronics and electrical driving, signal detecting and process, industrial automation.
基金the National Natural Science Foundation of China (No. 60525304)
文摘This paper focuses on the design problem of a memoryless state feedback robust H-infinity controller for a class of uncertain neutral systems. By using a newly established integral inequality, a new delay-dependent bounded real lemma for such systems is derived without involving a fixed model transformation. Furthermore, new delay-dependent sufficient conditions for the existence of robust H-infinity controllers are presented in terms of nonlinear matrix inequalities. A design procedure involving an iterative algorithm is also proposed to design such controllers. Numerical examples are given to demonstrate the less conservatism of the proposed method.
文摘The robust passivity control problem is addressed for a class of uncertain delayed systems with timevarying delay. The parameter uncertainties are norm-bounded. First, the delay-dependent stability sufficient condition is obtained for the nominal system, and then, based-on the former, the delay-dependent robust passivity criteria is provided and the corresponding controller is designed in terms of linear matrix inequalities. Finally, a numerical example is given to demonstrate the validity of the proposed approach.
基金supported by the National Natural Science Foundation of China (60874025)the Natural Science Foundation of Hunan Province(10JJ6098)the Scientific Research Fund of Hunan Provincial Education Department (10C0638)
文摘This paper deals with the problem of stability for systems with delay varying in an interval.A new Lyapunov functional,which makes use of the information of both the lower and upper bounds of the interval time-varying delay,is proposed to derive some new stability criteria.Furthermore,the relationship of the time-varying delay and its lower bound and upper bound is taken into account.As a result,some less conservative delay-dependent stability criteria are obtained without ignoring any useful information in the derivative of Lyapunov functional,which are established in the forms of linear matrix inequalities.Numerical examples are provided to show that the obtained results are better than existing ones.