This paper considers the problem of delay-dependent exponential stability in mean square for stochastic systems with polytopic-type uncertainties and time-varying delay. Applying the descriptor model transformation an...This paper considers the problem of delay-dependent exponential stability in mean square for stochastic systems with polytopic-type uncertainties and time-varying delay. Applying the descriptor model transformation and introducing free weighting matrices, a new type of Lyapunov-Krasovskii functional is constructed based on linear matrix inequalities (LMIs), and some new delay-dependent criteria are obtained. These criteria include the delay-independent/rate- dependent and delay-dependent/rate-independent exponential stability criteria. These new criteria are less conservative than existing ones. Numerical examples demonstrate that these new criteria are effective and are an improvement over existing ones.展开更多
The problem of delay-dependent exponential stability is investigated for impulsive stochastic systems with time-varying delay. Although the exponential stability of impulsive stochastic delay systems has been discusse...The problem of delay-dependent exponential stability is investigated for impulsive stochastic systems with time-varying delay. Although the exponential stability of impulsive stochastic delay systems has been discussed by several authors, few works have been done on delay-dependent exponential stability of impulsive stochastic delay systems. Firstly, the Lyapunov-Krasovskii functional method combing the free-weighting matrix approach is applied to investigate this problem. Some delay-dependent mean square exponential stability criteria are derived in terms of linear matrix inequalities. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters and impulsive effects. The obtained results show that the system will stable if the impulses' frequency and amplitude are suitably related to the increase or decrease of the continuous flows, and impulses may be used as controllers to stabilize the underlying stochastic system. Numerical examples are given to show the effectiveness of the results.展开更多
The exponential stability problem is investigated for a class of stochastic recurrent neural networks with time delay and Markovian switching. By using Ito's differential formula and the Lyapunov stability theory, su...The exponential stability problem is investigated for a class of stochastic recurrent neural networks with time delay and Markovian switching. By using Ito's differential formula and the Lyapunov stability theory, sufficient condition for the solvability of this problem is derived in term of linear matrix inequalities, which can be easily checked by resorting to available software packages. A numerical example and the simulation are exploited to demonstrate the effectiveness of the proposed results.展开更多
The global robust exponential stability of a class of neural networks with polytopic uncertainties and distributed delays is investigated in this paper.Parameter-dependent Lypaunov-Krasovskii functionals and free-weig...The global robust exponential stability of a class of neural networks with polytopic uncertainties and distributed delays is investigated in this paper.Parameter-dependent Lypaunov-Krasovskii functionals and free-weighting matrices are employed to obtain sufficient condition that guarantee the robust global exponential stability of the equilibrium point of the considered neural networks.The derived sufficient condition is proposed in terms of a set of relaxed linear matrix inequalities (LMIs),which can be checked easily by recently developed algorithms solving LMIs.A numerical example is given to demonstrate the effectiveness of the proposed criteria.展开更多
New robust exponential stabilization criteria for interval time-varying delay systems with norm-bounded uncertainties are proposed. Based on the free-weighting matrices and new Lyapunov-Krasovskii functionals, such cr...New robust exponential stabilization criteria for interval time-varying delay systems with norm-bounded uncertainties are proposed. Based on the free-weighting matrices and new Lyapunov-Krasovskii functionals, such criteria are obtained by dealing with system model directly and designing memoryless state feedback controllers and expressed in terms of linear matrix inequalities (LMIs). Moreover, the criteria are applicable to the case whether the derivative of the time-varying delay is bounded or not. The state decay rate is estimated by the corresponding LMIs. Numerical examples are given to illustrate the effectiveness of the proposed method.展开更多
The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and th...The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and the equivalent descriptor form, a delay-dependent stability criterion is established for the addressed systems. The condition is expressed in terms of a linear matrix inequality (LMI), and it can be checked by resorting to the LMI in the Matlab toolbox. In addition, the proposed stability criteria do not require the monotonicity of the activation functions and the derivative of a time-varying delay being less than 1, which generalize and improve earlier methods. Finally, numerical examples are given to show the effectiveness of the obtained methods.展开更多
Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m ...Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.展开更多
The problem of the stability for a class of stochastic systems with time-varying interval delay and the norm-bounded uncertainty is investigated. Utilizing the information of both the lower and the upper bounds of the...The problem of the stability for a class of stochastic systems with time-varying interval delay and the norm-bounded uncertainty is investigated. Utilizing the information of both the lower and the upper bounds of the interval time-varying delay, a novel Lyapunov-Krasovskii functional is constructed. The delay-dependent sufficient criteria are derived in terms of linear matrix inequalities (LMIs), which can be easily checked by the LMI in the Matlab toolbox. Based on the Jensen integral inequality, neither model transformations nor bounding techniques for cross terms is employed, so the derived criteria are less conservative than the existing results. Meanwhile, the computational complexity of the obtained stability conditions is reduced because no redundant matrix is introduced. A numerical example is given to show the effectiveness and the benefits of the proposed method.展开更多
This paper investigates the absolute exponential stability of generalized neural networks with a general class of partially Lipschitz continuous and monotone increasing activation functions. The main obtained result i...This paper investigates the absolute exponential stability of generalized neural networks with a general class of partially Lipschitz continuous and monotone increasing activation functions. The main obtained result is that if the interconnection matrix T of the neural system satisfies that - T is an H matrix with nonnegative diagonal elements, then the neural system is absolutely exponentially stable(AEST). The Hopfield network, Cellular neural network and Bidirectional associative memory network are special cases of the network model considered in this paper. So this work gives some improvements to the previous ones.展开更多
The article synthesizes and presents the results regarding the stability of positive homogeneous systems that have been researched and published in recent years. Next, we provide a sufficient condition for global expo...The article synthesizes and presents the results regarding the stability of positive homogeneous systems that have been researched and published in recent years. Next, we provide a sufficient condition for global exponential stability in the case of discrete-time positive homogeneous systems with an order less than one with time-varying delays.展开更多
It is well-recognized that a transfer system response delay that reduces the test stability inevitably exists in real-time dynamic hybrid testing (RTDHT). This paper focuses on the delay-dependent stability and adde...It is well-recognized that a transfer system response delay that reduces the test stability inevitably exists in real-time dynamic hybrid testing (RTDHT). This paper focuses on the delay-dependent stability and added damping of SDOF systems in RTDHT. The exponential delay term is transferred into a rational fraction by the Pad6 approximation, and the delay-dependent stability conditions and instability mechanism of SDOF RTDHT systems are investigated by the root locus technique. First, the stability conditions are discussed separately for the cases of stiffness, mass, and damping experimental substructure. The use of root locus plots shows that the added damping effect and instability mechanism for mass are different from those for stiffness. For the stiffness experimental substructure case, the instability results from the inherent mode because of an obvious negative damping effect of the delay. For the mass case, the delay introduces an equivalent positive damping into the inherent mode, and instability occurs at an added high frequency mode. Then, the compound stability condition is investigated for a general case and the results show that the mass ratio may have both upper and lower limits to remain stable. Finally, a high-emulational virtual shaking table model is built to validate the stability conclusions.展开更多
This paper will investigate global exponential stability analysis for a class of switched positive nonlinear systems under minimum dwell time switching, whose nonlinear functions for each subsystem are constrained in ...This paper will investigate global exponential stability analysis for a class of switched positive nonlinear systems under minimum dwell time switching, whose nonlinear functions for each subsystem are constrained in a sector field by two odd symmetric piecewise linear functions and whose system matrices for each subsystem are Metzler. A class of multiple time-varying Lyapunov functions is constructed to obtain the computable sufficient conditions on the stability of such switched nonlinear systems within the framework of minimum dwell time switching.All present conditions can be solved by linear/nonlinear programming techniques. An example is provided to demonstrate the effectiveness of the proposed result.展开更多
By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequ...By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequality and Hamilton-Jacobi inequality approach, some sufficient conditions of robust exponential stability for uncertain linear/nonlinear impulsive systems are derived, respectively. Finally, some examples are given to illustrate the applications of the theory.展开更多
A class of generalized Cohen-Grossberg neural networks(CGNNs) with variable de- lays are investigated. By introducing a new type of Lyapunov functional and applying the homeomorphism theory and inequality technique,...A class of generalized Cohen-Grossberg neural networks(CGNNs) with variable de- lays are investigated. By introducing a new type of Lyapunov functional and applying the homeomorphism theory and inequality technique, some new conditions axe derived ensuring the existence and uniqueness of the equilibrium point and its global exponential stability for CGNNs. These results obtained are independent of delays, develop the existent outcome in the earlier literature and are very easily checked in practice.展开更多
In this paper, the global exponential robust stability of neural networks with ume-varying delays is investigated. By using nonnegative matrix theory and the Halanay inequality, a new sufficient condition for global e...In this paper, the global exponential robust stability of neural networks with ume-varying delays is investigated. By using nonnegative matrix theory and the Halanay inequality, a new sufficient condition for global exponential robust stability is presented. It is shown that the obtained result is different from or improves some existing ones reported in the literatures. Finally, some numerical examples and a simulation are given to show the effectiveness of the obtained result.展开更多
In this paper, the problem of the global exponential stability analysis is investigated for a class of recurrent neural networks (RNNs) with time-varying discrete and distributed delays. Due to a novel technique whe...In this paper, the problem of the global exponential stability analysis is investigated for a class of recurrent neural networks (RNNs) with time-varying discrete and distributed delays. Due to a novel technique when estimating the upper bound of the derivative of Lyapunov functional, we establish new exponential stability criteria in terms of LMIs. It is shown that the obtained criteria can provide less conservative results than some existing ones. Numerical examples are given to show the effectiveness of the proposed results.展开更多
The exponential stability is investigated for a class of continuous time linear systems with a finite state Markov chain form process and the impulsive jump at switching moments. The conditions, based on the average d...The exponential stability is investigated for a class of continuous time linear systems with a finite state Markov chain form process and the impulsive jump at switching moments. The conditions, based on the average dwell time and the ratio of expectation of the total time running on all unstable subsystems to the expectation of the total time running on all stable subsystems,assure the exponential stability with a desired stability degree of the system irrespective of the impact of impulsive jump. The uniformly bounded result is realized for the case in which switched system is subjected to the impulsive effect of the excitation signal at some switching moments.展开更多
The problem of delay-dependent criteria for the robust stability of neutral systems with time-varying structured uncertainties and identi-cal neutral-delay and discrete-delay is concerned. A criterion for nominal syst...The problem of delay-dependent criteria for the robust stability of neutral systems with time-varying structured uncertainties and identi-cal neutral-delay and discrete-delay is concerned. A criterion for nominal systems is presented by taking the relationship between the terms in the Leibniz-Newton formula into account, which is described by some free-weighting matrices. In addition, this criterion is extended to robust stability of the systems with time-varying structured uncertainties. All of the criteria are based on linear matrix inequality such that it is easy to calculate the upper bound of the time-delay and the free-weighting matrices. Numerical examples illustrate the effectiveness and the improvement over the existing results.展开更多
Some global properties such as global attractivity and global exponential stability for delayed Hopfield neural networks model, under the weaker assumptions on nonlinear activation functions, are concerned. By constru...Some global properties such as global attractivity and global exponential stability for delayed Hopfield neural networks model, under the weaker assumptions on nonlinear activation functions, are concerned. By constructing suitable Liapunov function, some simpler criteria for global attractivity and global exponential stability for Hopfield continuous neural network,; with time delays are presented.展开更多
The stability and stabilization of a class of linear switched time-varying delay systems are investigated. A piecewise quadratic Lyapunov function (PWQLF) is constructed and is used to obtain the stability condition...The stability and stabilization of a class of linear switched time-varying delay systems are investigated. A piecewise quadratic Lyapunov function (PWQLF) is constructed and is used to obtain the stability conditions based on the linear matrix inequalities (LMIs). The stabilizing controller for this class of system is then designed and the solution of the desired controller can be obtained by a cone complementary linearization algorithm. Numerical examples are provided to illustrate the less conservativeness of the new stability and the validity of the controller design procedures.展开更多
基金supported by the National Natural Science Foundation of China (No.60525303, 60604004, 60704009) Natural Science Foundationof Hebei Province, China (No.F2005000390, F2006000270)
文摘This paper considers the problem of delay-dependent exponential stability in mean square for stochastic systems with polytopic-type uncertainties and time-varying delay. Applying the descriptor model transformation and introducing free weighting matrices, a new type of Lyapunov-Krasovskii functional is constructed based on linear matrix inequalities (LMIs), and some new delay-dependent criteria are obtained. These criteria include the delay-independent/rate- dependent and delay-dependent/rate-independent exponential stability criteria. These new criteria are less conservative than existing ones. Numerical examples demonstrate that these new criteria are effective and are an improvement over existing ones.
基金supported by the National Natural Science Foundation of China (60874114)the Fundamental Research Funds for the Central Universities, South China University of Technology (SCUT)(2009ZM0140)
文摘The problem of delay-dependent exponential stability is investigated for impulsive stochastic systems with time-varying delay. Although the exponential stability of impulsive stochastic delay systems has been discussed by several authors, few works have been done on delay-dependent exponential stability of impulsive stochastic delay systems. Firstly, the Lyapunov-Krasovskii functional method combing the free-weighting matrix approach is applied to investigate this problem. Some delay-dependent mean square exponential stability criteria are derived in terms of linear matrix inequalities. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters and impulsive effects. The obtained results show that the system will stable if the impulses' frequency and amplitude are suitably related to the increase or decrease of the continuous flows, and impulses may be used as controllers to stabilize the underlying stochastic system. Numerical examples are given to show the effectiveness of the results.
文摘The exponential stability problem is investigated for a class of stochastic recurrent neural networks with time delay and Markovian switching. By using Ito's differential formula and the Lyapunov stability theory, sufficient condition for the solvability of this problem is derived in term of linear matrix inequalities, which can be easily checked by resorting to available software packages. A numerical example and the simulation are exploited to demonstrate the effectiveness of the proposed results.
文摘The global robust exponential stability of a class of neural networks with polytopic uncertainties and distributed delays is investigated in this paper.Parameter-dependent Lypaunov-Krasovskii functionals and free-weighting matrices are employed to obtain sufficient condition that guarantee the robust global exponential stability of the equilibrium point of the considered neural networks.The derived sufficient condition is proposed in terms of a set of relaxed linear matrix inequalities (LMIs),which can be checked easily by recently developed algorithms solving LMIs.A numerical example is given to demonstrate the effectiveness of the proposed criteria.
基金supported by the Science and Technology Project of Liaoning Provincial Education Department
文摘New robust exponential stabilization criteria for interval time-varying delay systems with norm-bounded uncertainties are proposed. Based on the free-weighting matrices and new Lyapunov-Krasovskii functionals, such criteria are obtained by dealing with system model directly and designing memoryless state feedback controllers and expressed in terms of linear matrix inequalities (LMIs). Moreover, the criteria are applicable to the case whether the derivative of the time-varying delay is bounded or not. The state decay rate is estimated by the corresponding LMIs. Numerical examples are given to illustrate the effectiveness of the proposed method.
基金The National Natural Science Foundation of China (No60574006)
文摘The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and the equivalent descriptor form, a delay-dependent stability criterion is established for the addressed systems. The condition is expressed in terms of a linear matrix inequality (LMI), and it can be checked by resorting to the LMI in the Matlab toolbox. In addition, the proposed stability criteria do not require the monotonicity of the activation functions and the derivative of a time-varying delay being less than 1, which generalize and improve earlier methods. Finally, numerical examples are given to show the effectiveness of the obtained methods.
文摘Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.
基金The National Natural Science Foundation of China(No.60874030,60574006,60404006)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.07KJB510125)
文摘The problem of the stability for a class of stochastic systems with time-varying interval delay and the norm-bounded uncertainty is investigated. Utilizing the information of both the lower and the upper bounds of the interval time-varying delay, a novel Lyapunov-Krasovskii functional is constructed. The delay-dependent sufficient criteria are derived in terms of linear matrix inequalities (LMIs), which can be easily checked by the LMI in the Matlab toolbox. Based on the Jensen integral inequality, neither model transformations nor bounding techniques for cross terms is employed, so the derived criteria are less conservative than the existing results. Meanwhile, the computational complexity of the obtained stability conditions is reduced because no redundant matrix is introduced. A numerical example is given to show the effectiveness and the benefits of the proposed method.
文摘This paper investigates the absolute exponential stability of generalized neural networks with a general class of partially Lipschitz continuous and monotone increasing activation functions. The main obtained result is that if the interconnection matrix T of the neural system satisfies that - T is an H matrix with nonnegative diagonal elements, then the neural system is absolutely exponentially stable(AEST). The Hopfield network, Cellular neural network and Bidirectional associative memory network are special cases of the network model considered in this paper. So this work gives some improvements to the previous ones.
文摘The article synthesizes and presents the results regarding the stability of positive homogeneous systems that have been researched and published in recent years. Next, we provide a sufficient condition for global exponential stability in the case of discrete-time positive homogeneous systems with an order less than one with time-varying delays.
基金State Key Laboratory of Hydroscience and Engineering Under Grant No.2008-TC-2National Natural Science Foundation of China Under Grant No.90510018,50779021 and 90715041
文摘It is well-recognized that a transfer system response delay that reduces the test stability inevitably exists in real-time dynamic hybrid testing (RTDHT). This paper focuses on the delay-dependent stability and added damping of SDOF systems in RTDHT. The exponential delay term is transferred into a rational fraction by the Pad6 approximation, and the delay-dependent stability conditions and instability mechanism of SDOF RTDHT systems are investigated by the root locus technique. First, the stability conditions are discussed separately for the cases of stiffness, mass, and damping experimental substructure. The use of root locus plots shows that the added damping effect and instability mechanism for mass are different from those for stiffness. For the stiffness experimental substructure case, the instability results from the inherent mode because of an obvious negative damping effect of the delay. For the mass case, the delay introduces an equivalent positive damping into the inherent mode, and instability occurs at an added high frequency mode. Then, the compound stability condition is investigated for a general case and the results show that the mass ratio may have both upper and lower limits to remain stable. Finally, a high-emulational virtual shaking table model is built to validate the stability conclusions.
基金supported by the National Natural Science Foundation of China(61673198)the Provincial Natural Science Foundation of Liaoning Province(20180550473)
文摘This paper will investigate global exponential stability analysis for a class of switched positive nonlinear systems under minimum dwell time switching, whose nonlinear functions for each subsystem are constrained in a sector field by two odd symmetric piecewise linear functions and whose system matrices for each subsystem are Metzler. A class of multiple time-varying Lyapunov functions is constructed to obtain the computable sufficient conditions on the stability of such switched nonlinear systems within the framework of minimum dwell time switching.All present conditions can be solved by linear/nonlinear programming techniques. An example is provided to demonstrate the effectiveness of the proposed result.
文摘By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequality and Hamilton-Jacobi inequality approach, some sufficient conditions of robust exponential stability for uncertain linear/nonlinear impulsive systems are derived, respectively. Finally, some examples are given to illustrate the applications of the theory.
基金Supported by the Distinguished Expert Science Foundation of Naval Aeronautical Engineering Institutethe Younger Foundation of Yantai University (SX06Z9)
文摘A class of generalized Cohen-Grossberg neural networks(CGNNs) with variable de- lays are investigated. By introducing a new type of Lyapunov functional and applying the homeomorphism theory and inequality technique, some new conditions axe derived ensuring the existence and uniqueness of the equilibrium point and its global exponential stability for CGNNs. These results obtained are independent of delays, develop the existent outcome in the earlier literature and are very easily checked in practice.
基金supported by 973 Programs (No.2008CB317110)the Key Project of Chinese Ministry of Education (No.107098)+1 种基金Sichuan Province Project for Applied Basic Research (No.2008JY0052)the Project for Academic Leader and Group of UESTC
文摘In this paper, the global exponential robust stability of neural networks with ume-varying delays is investigated. By using nonnegative matrix theory and the Halanay inequality, a new sufficient condition for global exponential robust stability is presented. It is shown that the obtained result is different from or improves some existing ones reported in the literatures. Finally, some numerical examples and a simulation are given to show the effectiveness of the obtained result.
基金supported by National Natural Science Foundation of China (No.60674027,No.60974127)Key Project of Education Ministry of China (No.208074)
文摘In this paper, the problem of the global exponential stability analysis is investigated for a class of recurrent neural networks (RNNs) with time-varying discrete and distributed delays. Due to a novel technique when estimating the upper bound of the derivative of Lyapunov functional, we establish new exponential stability criteria in terms of LMIs. It is shown that the obtained criteria can provide less conservative results than some existing ones. Numerical examples are given to show the effectiveness of the proposed results.
基金the National Natural Science Foundation of China (60674027, 60574007)Doctoral Foundation of Education Ministry of China (20050446001).
文摘The exponential stability is investigated for a class of continuous time linear systems with a finite state Markov chain form process and the impulsive jump at switching moments. The conditions, based on the average dwell time and the ratio of expectation of the total time running on all unstable subsystems to the expectation of the total time running on all stable subsystems,assure the exponential stability with a desired stability degree of the system irrespective of the impact of impulsive jump. The uniformly bounded result is realized for the case in which switched system is subjected to the impulsive effect of the excitation signal at some switching moments.
文摘The problem of delay-dependent criteria for the robust stability of neutral systems with time-varying structured uncertainties and identi-cal neutral-delay and discrete-delay is concerned. A criterion for nominal systems is presented by taking the relationship between the terms in the Leibniz-Newton formula into account, which is described by some free-weighting matrices. In addition, this criterion is extended to robust stability of the systems with time-varying structured uncertainties. All of the criteria are based on linear matrix inequality such that it is easy to calculate the upper bound of the time-delay and the free-weighting matrices. Numerical examples illustrate the effectiveness and the improvement over the existing results.
文摘Some global properties such as global attractivity and global exponential stability for delayed Hopfield neural networks model, under the weaker assumptions on nonlinear activation functions, are concerned. By constructing suitable Liapunov function, some simpler criteria for global attractivity and global exponential stability for Hopfield continuous neural network,; with time delays are presented.
基金the National Natural Science Foundation of China (69874008).
文摘The stability and stabilization of a class of linear switched time-varying delay systems are investigated. A piecewise quadratic Lyapunov function (PWQLF) is constructed and is used to obtain the stability conditions based on the linear matrix inequalities (LMIs). The stabilizing controller for this class of system is then designed and the solution of the desired controller can be obtained by a cone complementary linearization algorithm. Numerical examples are provided to illustrate the less conservativeness of the new stability and the validity of the controller design procedures.