Ship.to.ship, ship.to.shore radio links empowered by Wi Fi, Wi MAX etc have been recently exploited to build maritime multi.hop mesh networks to provide internet services to on.ship users. However, because of the mobi...Ship.to.ship, ship.to.shore radio links empowered by Wi Fi, Wi MAX etc have been recently exploited to build maritime multi.hop mesh networks to provide internet services to on.ship users. However, because of the mobility of the vessels/ships and the large inter.ship distances, nodes in the maritime network are frequently disconnected, forcing data communication in the maritime mesh networks to be opportunistic and delay.tolerant. In this paper, we present Lane Post, an optimization approach for maritime delay.tolerant routing protocol. We exploit the shipping lane information to predict the rendezvous opportunities of the ships to optimize the route selection in delay.tolerant routing. In particular, we show that when the shipping lane information is available, an opportunistic routing graph(ORG) for each ship can be constructed to predict its multi.hop data routing opportunities to the other ships or to the shore. Based on the ORG, we develop an optimal route protocol(i.e., Lane Post) for each ship to minimize its delay of multi.hop packet delivery via dynamic programming. We discussed the ways of collecting shipping lane information by centralized method or distributed method.The proposed Lane Post protocol was evaluated by ONE, an open.source delay.tolerant network simulator, which shows its dramatic performance improvement in terms of delay reduction compared to the state.of.the.art opportunistic routing protocols.展开更多
This paper presents a Dynamic Cross-layer Data Queue Management approach (DC-DQM) based on priority to address the priority deviation problem in Delay-Tolerant Mobile Sensor Networks (DT-MSNs). Receiver-driven data de...This paper presents a Dynamic Cross-layer Data Queue Management approach (DC-DQM) based on priority to address the priority deviation problem in Delay-Tolerant Mobile Sensor Networks (DT-MSNs). Receiver-driven data delivery scheme is used for fast response to data transfers, and a priority based interaction model is adopted to identify the data priority. Three interactive parameters are introduced to prioritize and dynamically manage data queue. The experimental results show that it can ameliorate data delivery ratio and achieve good performance in terms of average delay.展开更多
The lack of continuous connectivity and a complete path from source to destination makes node communication quite difficult in Delay-Tolerant Networks(DTNs). Most studies focus on routing problems in idealized network...The lack of continuous connectivity and a complete path from source to destination makes node communication quite difficult in Delay-Tolerant Networks(DTNs). Most studies focus on routing problems in idealized network environments without considering social properties. Communication devices are carried by individuals in many DTNs; therefore, DTNs are unique social networks to some extent. To design efficient routing protocols for DTNs, it is important to analyze their social properties. In this paper, a more accurate and comprehensive metric for detecting the quality of the relationships between nodes is proposed, by considering the contact time, contact frequency, and contact regularity. An overlapping hierarchical community detection method is designed based on this new metric, and a tree structure is built. Furthermore, we exploit the overlapping community structure and the tree structure to provide message-forwarding paths from the source node to the destination node.The simulation results show that our Routing method based on Overlapping hierarchical Community Detection(ROCD) achieves better delivery rate than SimBet and Bubble Rap, the classic routing protocols, without affecting the average delay.展开更多
For optimal operation of microgrids,energy management is indispensable to reduce the operation cost and the emission of conventional units.The goals can be impeded by several factors including uncertainties of market ...For optimal operation of microgrids,energy management is indispensable to reduce the operation cost and the emission of conventional units.The goals can be impeded by several factors including uncertainties of market price,renewable generation,and loads.Real-time energy management system(EMS)can effectively address uncertainties due to the online information of market price,renewable generation,and loads.However,some issues arise in real-time EMS as batterylimited energy levels.In this paper,Lyapunov optimization is used to minimize the operation cost of the microgrid and the emission of conventional units.Therefore,the problem is multiobjective and a Pareto front is derived to compromise between the operation cost and the emission.With a modified IEEE 33-bus distribution system,general algebraic modeling system(GAMS)is utilized for implementing the proposed EMS on two case studies to verify its applicability.展开更多
The evolution of smart mobile devices has significantly impacted the way we generate and share contents and introduced a huge volume of Internet traffic.To address this issue and take advantage of the short-range comm...The evolution of smart mobile devices has significantly impacted the way we generate and share contents and introduced a huge volume of Internet traffic.To address this issue and take advantage of the short-range communication capabilities of smart mobile devices,the decentralized content sharing approach has emerged as a suitable and promising alternative.Decentralized content sharing uses a peer-to-peer network among colocated smart mobile device users to fulfil content requests.Several articles have been published to date to address its different aspects including group management,interest extraction,message forwarding,participation incentive,and content replication.This survey paper summarizes and critically analyzes recent advancements in decentralized content sharing and highlights potential research issues that need further consideration.展开更多
Delay tolerant networks (DTNs) experience frequent and long lasting network disconnection due to various reasons such as mobility, power management, and scheduling. One primary concern in DTNs is to route messages t...Delay tolerant networks (DTNs) experience frequent and long lasting network disconnection due to various reasons such as mobility, power management, and scheduling. One primary concern in DTNs is to route messages to keep the end-to-end delivery delay as low as possible. In this paper, we study the single-copy message routing problem and propose an optimal opportunistic routing strategy -Leapfrog Routing - for probabilistically contacted DTNs where nodes encounter or contact in some fixed probabilities. We deduce the iterative computation formulate of minimum expected opportunistic delivery delay from each node to the destination, and discover that under the optimal opportunistic routing strategy, messages would be delivered from high-delay node to low-delay node in the leapfrog manner. Rigorous theoretical analysis shows that such a routing strategy is exactly the optimal among all possible ones. Moreover, we apply the idea of Reverse Dijkstra algorithm to design an algorithm. When a destination is given, this algorithm can determine for each node the routing selection function under the Leapfrog Routing strategy. The computation overhead of this algorithm is only O(n^2) where n is the number of nodes in the network. In addition, through extensive simulations based on real DTN traces, we demonstrate that our algorithm can significantly outperform the previous ones.展开更多
基金supported in part by National Natural Science Foundation of China Grant 61672524the Fundamental Research Funds for the Central University+1 种基金the Research Funds of Renmin University of China, 2015030273National Key Technology Support Program 2014BAK12B06
文摘Ship.to.ship, ship.to.shore radio links empowered by Wi Fi, Wi MAX etc have been recently exploited to build maritime multi.hop mesh networks to provide internet services to on.ship users. However, because of the mobility of the vessels/ships and the large inter.ship distances, nodes in the maritime network are frequently disconnected, forcing data communication in the maritime mesh networks to be opportunistic and delay.tolerant. In this paper, we present Lane Post, an optimization approach for maritime delay.tolerant routing protocol. We exploit the shipping lane information to predict the rendezvous opportunities of the ships to optimize the route selection in delay.tolerant routing. In particular, we show that when the shipping lane information is available, an opportunistic routing graph(ORG) for each ship can be constructed to predict its multi.hop data routing opportunities to the other ships or to the shore. Based on the ORG, we develop an optimal route protocol(i.e., Lane Post) for each ship to minimize its delay of multi.hop packet delivery via dynamic programming. We discussed the ways of collecting shipping lane information by centralized method or distributed method.The proposed Lane Post protocol was evaluated by ONE, an open.source delay.tolerant network simulator, which shows its dramatic performance improvement in terms of delay reduction compared to the state.of.the.art opportunistic routing protocols.
基金Supported by the Anhui Provincial Natural Science Foundation (No. 2012AKZR0330)Postdoctoral Science Foundation of China (No. 2012M521247)the Fundamental Research Funds for the Central Universities
文摘This paper presents a Dynamic Cross-layer Data Queue Management approach (DC-DQM) based on priority to address the priority deviation problem in Delay-Tolerant Mobile Sensor Networks (DT-MSNs). Receiver-driven data delivery scheme is used for fast response to data transfers, and a priority based interaction model is adopted to identify the data priority. Three interactive parameters are introduced to prioritize and dynamically manage data queue. The experimental results show that it can ameliorate data delivery ratio and achieve good performance in terms of average delay.
基金supported by the Youth Sci-Tech innovation leader and team project of Jilin Province of China (No. 20170519017JH)the National Science-Technology Support Project (No. 2014BAH02F02)the Graduate Innovation Fund of Jilin University (No. 2016031)
文摘The lack of continuous connectivity and a complete path from source to destination makes node communication quite difficult in Delay-Tolerant Networks(DTNs). Most studies focus on routing problems in idealized network environments without considering social properties. Communication devices are carried by individuals in many DTNs; therefore, DTNs are unique social networks to some extent. To design efficient routing protocols for DTNs, it is important to analyze their social properties. In this paper, a more accurate and comprehensive metric for detecting the quality of the relationships between nodes is proposed, by considering the contact time, contact frequency, and contact regularity. An overlapping hierarchical community detection method is designed based on this new metric, and a tree structure is built. Furthermore, we exploit the overlapping community structure and the tree structure to provide message-forwarding paths from the source node to the destination node.The simulation results show that our Routing method based on Overlapping hierarchical Community Detection(ROCD) achieves better delivery rate than SimBet and Bubble Rap, the classic routing protocols, without affecting the average delay.
基金supported by a research grant of the University of Tabriz,Vice Chancellery for Research and Technology,University of Tabriz,Tabriz,Iran
文摘For optimal operation of microgrids,energy management is indispensable to reduce the operation cost and the emission of conventional units.The goals can be impeded by several factors including uncertainties of market price,renewable generation,and loads.Real-time energy management system(EMS)can effectively address uncertainties due to the online information of market price,renewable generation,and loads.However,some issues arise in real-time EMS as batterylimited energy levels.In this paper,Lyapunov optimization is used to minimize the operation cost of the microgrid and the emission of conventional units.Therefore,the problem is multiobjective and a Pareto front is derived to compromise between the operation cost and the emission.With a modified IEEE 33-bus distribution system,general algebraic modeling system(GAMS)is utilized for implementing the proposed EMS on two case studies to verify its applicability.
文摘The evolution of smart mobile devices has significantly impacted the way we generate and share contents and introduced a huge volume of Internet traffic.To address this issue and take advantage of the short-range communication capabilities of smart mobile devices,the decentralized content sharing approach has emerged as a suitable and promising alternative.Decentralized content sharing uses a peer-to-peer network among colocated smart mobile device users to fulfil content requests.Several articles have been published to date to address its different aspects including group management,interest extraction,message forwarding,participation incentive,and content replication.This survey paper summarizes and critically analyzes recent advancements in decentralized content sharing and highlights potential research issues that need further consideration.
基金supported by the National Basic Research 973 Program of China under Grant No.2006CB303006the National Natural Science Foundation of China under Grant No.60803009,the National Research Foundation for the Doctoral Program of Higher Education of China under Grant No.20070358075
文摘Delay tolerant networks (DTNs) experience frequent and long lasting network disconnection due to various reasons such as mobility, power management, and scheduling. One primary concern in DTNs is to route messages to keep the end-to-end delivery delay as low as possible. In this paper, we study the single-copy message routing problem and propose an optimal opportunistic routing strategy -Leapfrog Routing - for probabilistically contacted DTNs where nodes encounter or contact in some fixed probabilities. We deduce the iterative computation formulate of minimum expected opportunistic delivery delay from each node to the destination, and discover that under the optimal opportunistic routing strategy, messages would be delivered from high-delay node to low-delay node in the leapfrog manner. Rigorous theoretical analysis shows that such a routing strategy is exactly the optimal among all possible ones. Moreover, we apply the idea of Reverse Dijkstra algorithm to design an algorithm. When a destination is given, this algorithm can determine for each node the routing selection function under the Leapfrog Routing strategy. The computation overhead of this algorithm is only O(n^2) where n is the number of nodes in the network. In addition, through extensive simulations based on real DTN traces, we demonstrate that our algorithm can significantly outperform the previous ones.