期刊文献+
共找到257篇文章
< 1 2 13 >
每页显示 20 50 100
Assessing Suitability of Irrigation Scheduling Decision Support Systems for Lowland Rice Farmers in Sub-Saharan Africa—A Review
1
作者 Aloysius Mubangizi Joshua Wanyama +1 位作者 Nicholas Kiggundu Prossie Nakawuka 《Agricultural Sciences》 CAS 2023年第2期219-239,共21页
Irrigation in lowland rice production systems in Sub-Saharan Africa (SSA) is mainly based on traditional surface irrigation methods with continuous flooding practices. This irrigation method ends up using a lot more w... Irrigation in lowland rice production systems in Sub-Saharan Africa (SSA) is mainly based on traditional surface irrigation methods with continuous flooding practices. This irrigation method ends up using a lot more water that would have otherwise been used to open more land and be used in other water-requiring sectors. Various studies suggest Alternate Wetting and Drying (AWD) as an alternative practice for water management that reduces water use without significantly affecting yield. However, this practice has not been well adopted by the farmers despite its significant benefits of reduced total water use. Improving the adoption of AWD using irrigation Decision Support Systems (DSSs) helps the farmer on two fronts;to know “how much water to apply” and “when to irrigate”, which is very critical in maximizing productivity. This paper reviews the applicability of DSSs using AWD in lowland rice production systems in Sub-Saharan Africa. 展开更多
关键词 Lowland Rice Irrigation Scheduling forecasting decision support systems Rice Production Farmer-Led Irrigation AWD
下载PDF
Spare Parts Demand Forecasting:a Review 被引量:1
2
作者 曹文斌 宋文渊 +1 位作者 韩玉成 武禹陶 《Journal of Donghua University(English Edition)》 EI CAS 2016年第2期340-344,共5页
Spare parts are very common in industry and military fields, and the investigations of spare parts demand forecasting methods have draws much attention in recent years. However,to the best of our knowledge,only few pa... Spare parts are very common in industry and military fields, and the investigations of spare parts demand forecasting methods have draws much attention in recent years. However,to the best of our knowledge,only few papers reviewed the forecasting papers systematically. This paper is an attempt to provide a novel and comprehensive view to summarize these methods. A new framework was proposed to classify the demand forecasting methods into four categories,including empirical methods,methods based on historical data,analytical methods and simulation methods. Some typical literatures related to each category were reviewed.Moreover, a general spare parts forecasting procedure was summarized and some evaluation criteria were presented. Finally,characteristics of different forecasting methods and some avenues for further research were illustrated. This work provides the managers with a systematical idea about the spare parts demand forecasting and it can be used in practical applications. 展开更多
关键词 spare parts demand forecasting methods maintenance and support
下载PDF
Design of an Evacuation Demand Forecasting Module for Hurricane Planning Applications
3
作者 Gary P. Moynihan Daniel J. Fonseca 《Journal of Transportation Technologies》 2016年第5期257-276,共20页
This paper discusses the development and implementation of an evacuation demand forecasting module that was incorporated into a comprehensive decision support system for the planning and management of contraflow opera... This paper discusses the development and implementation of an evacuation demand forecasting module that was incorporated into a comprehensive decision support system for the planning and management of contraflow operations in the Gulf of Mexico. Contraflow implies the reversing of one direction of a highway in order to permit a substantially increased travel demand exiting away from an area impacted by a natural disaster or any other type of catastrophic event. Correctly estimating the evacuation demand originated from such a catastrophic event is critical to a successful contraflow implementation. One problem faced by transportation officials is the arranging of the different stages of this complex traffic procedure. Both the prompt deployment of resources and personnel as well as the duration of the actual contraflow affect the overall effectiveness, safety and cost of the evacuation event. During this project, researchers from the University of Alabama developed an integral decision support system for contraflow evacuation planning to assist the Alabama Department of Transportation Maintenance Bureau in the evaluation and planning of contraflow operations oriented to mitigate the evacuation burdens of a hurricane event. This paper focuses on the design of the demand forecasting module of such a decision support system. 展开更多
关键词 Hurricane Evacuation Road Capacity demand forecasting decision support system
下载PDF
Evaluation of building energy demand forecast models using multi-attribute decision making approach 被引量:1
4
作者 Nivethitha Somu Anupama Kowli 《Energy and Built Environment》 2024年第3期480-491,共12页
With the existence of several conventional and advanced building thermal energy demand forecast models to improve the energy efficiency of buildings,it is hard to find an appropriate,convenient,and efficient model.Eva... With the existence of several conventional and advanced building thermal energy demand forecast models to improve the energy efficiency of buildings,it is hard to find an appropriate,convenient,and efficient model.Evaluations based on statistical indexes(MAE,RMSE,MAPE,etc.)that characterize the accuracy of the forecasts do not help in the identification of the efficient building thermal energy demand forecast tool since they do not reflect the efforts entailed in implementation of the forecast model,i.e.,data collection to production/use phase.Hence,this work presents a Gini Index based Measurement of Alternatives and Ranking according to COmpromise Solution(GI-MARCOS),a hybrid Multi Attribute Decision Making(MADM)approach for the identification of the most efficient building energy demand forecast tool.GI-MARCOS employs(i)GI based objective weight method:assigns meaningful objective weights to the attributes in four phases(1:pre-processing,2:implementation,3:post-processing,and 4:use phase)thereby avoiding unnecessary biases in the expert’s opinion on weights and applicable to domains where there is a lack of domain expertise,and(ii)MARCOS:provides a robust and reliable ranking of alternatives in a dynamic environment.A case study with three alternatives evaluated over three to six attributes in four phases of implementation(pre-processing,implementation,post-processing and use)reveals that the use of GI-MARCOS improved the accuracy of alternatives MLR and BM by 6%and 13%,respectively.Moreover,additional validations state that(i)MLR performs best in Phase 1 and 2,while ANN performs best in Phase 3 and 4 with BM providing a mediocre performance in all four phases,(ii)sensitivity analysis:provides robust ranking with interchange of weights across phases and attributes,and(iii)rank correlation:ranks produce by GI-MARCOS has a high correlation with GRA(0.999),COPRAS(0.9786),and ARAS(0.9775). 展开更多
关键词 Building energy demand Multi-attribute decision making Objective weights forecast models Sensitivity analysis
原文传递
RS-SVM forecasting model and power supply-demand forecast 被引量:4
5
作者 杨淑霞 曹原 +1 位作者 刘达 黄陈锋 《Journal of Central South University》 SCIE EI CAS 2011年第6期2074-2079,共6页
A support vector machine (SVM) forecasting model based on rough set (RS) data preprocess was proposed by combining the rough set attribute reduction and the support vector machine regression algorithm, because there a... A support vector machine (SVM) forecasting model based on rough set (RS) data preprocess was proposed by combining the rough set attribute reduction and the support vector machine regression algorithm, because there are strong complementarities between two models. Firstly, the rough set was used to reduce the condition attributes, then to eliminate the attributes that were redundant for the forecast, Secondly, it adopted the minimum condition attributes obtained by reduction and the corresponding original data to re-form a new training sample, which only kept the important attributes affecting the forecast accuracy. Finally, it studied and trained the SVM with the training samples after reduction, inputted the test samples re-formed by the minimum condition attributes and the corresponding original data, and then got the mapping relationship model between condition attributes and forecast variables after testing it. This model was used to forecast the power supply and demand. The results show that the average absolute error rate of power consumption of the whole society and yearly maximum load are 14.21% and 13.23%, respectively, which indicates that the RS-SVM forecast model has a higher degree of accuracy. 展开更多
关键词 rough set (RS) support vector machine (SVM) power supply and demand forecast
下载PDF
Forecast of Air Traffic Controller Demand Based on SVR and Parameter Optimization 被引量:2
6
作者 ZHANG Yali LI Shan ZHANG Honghai 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第6期959-966,共8页
As the main body of air traffic control safety,the air traffic controller is an important part of the whole air traffic control system. According to the relevant data of civil aviation over the years,a mapping model b... As the main body of air traffic control safety,the air traffic controller is an important part of the whole air traffic control system. According to the relevant data of civil aviation over the years,a mapping model between flight support sorties and air traffic controller demand is constructed by using the prediction algorithm of support vector regression(SVR) based on grid search and cross-validation. Then the model predicts the demand for air traffic controllers in seven regions. Additionally,according to the employment data of civil aviation universities,the future training scale of air traffic controller is predicted. The forecast results show that the average relative error of the number of controllers predicted by the algorithm is 1.73%,and the prediction accuracy is higher than traditional regression algorithms. Under the influence of the epidemic,the demand for air traffic controllers will decrease in the short term,but with the control of the epidemic,the demand of air traffic controllers will return to the pre-epidemic level and gradually increase. It is expected that the controller increment will be about 816 by 2028. The forecast results of the demand for air traffic controllers provide a theoretical basis for the introduction and training of medium and long-term air traffic controllers,and also provide method guidance and decision support for the establishment of professional reserve and dynamic control mechanism in the air traffic control system. 展开更多
关键词 air traffic controller demand forecast support vector regression(SVR) grid search cross-validation
下载PDF
Forecasting tourism demand by extracting fuzzy Takagi-Sugeno rules from trained SVMs 被引量:1
7
作者 Xin Xu Rob Law +1 位作者 Wei Chen Lin Tang 《CAAI Transactions on Intelligence Technology》 2016年第1期30-42,共13页
Tourism demand forecasting has attracted substantial interest because of the significant economic contributions of the fast-growing tourism industry. Although various quantitative forecasting techniques have been wide... Tourism demand forecasting has attracted substantial interest because of the significant economic contributions of the fast-growing tourism industry. Although various quantitative forecasting techniques have been widely studied, highly accurate and understandable forecasting models have not been developed. The present paper proposes a novel tourism demand forecasting method that extracts fuzzy Takagi-Sugeno (T-S) rules from trained SVMs. Unlike previous approaches, this study uses fuzzy T-S models extracted from the outputs of trained SVMs on tourism data. Owing to the symbolic fuzzy rules and the generalization ability of SVMs, the extracted fuzzy T-S rules exhibit high forecasting accuracy and include understandable pre-condition parts for practitioners. Based on the tourism demand forecasting problem in Hong Kong SAR, China as a case study, empirical findings on tourist arrivals from nine overseas origins reveal that the proposed approach performs comparably with SVMs and can achieve better prediction accuracy than other forecasting techniques for most origins. The findings demonstrated that decision makers can easily interpret fuzzy T-S rules extracted from SVMs. Thus, the approach is highly beneficial to tourism market management. This finding demonstrates the excellent scientific and practical values of the proposed approach in tourism demand forecasting. 展开更多
关键词 Fuzzy modeling Rule extraction support vector machines Tourism demand forecasting
下载PDF
Neural Network-Based Performance Index Model for Enterprise Goals Simulation and Forecasting
8
作者 Joe Essien Martin Ogharandukun 《Journal of Computer and Communications》 2023年第8期1-13,共13页
Enterprise Information System management has become an increasingly vital factor for many firms. Several organizations have encountered problems when attempting to evaluate organizational performance. Measurement of p... Enterprise Information System management has become an increasingly vital factor for many firms. Several organizations have encountered problems when attempting to evaluate organizational performance. Measurement of performance metrics is a key challenge for a huge number of firms. In order to preserve relevance and adaptability in competitive markets, it has become essential to respond proactively to complex events through informed decision-making that is supported by technology. Therefore, the objective of this study was to apply neural networks to the modeling, simulation, and forecasting of the effects of the performance indicators of Enterprise Information Systems on the achievement of corporate objectives and value creation. A set of quantifiable and sizeable conditionally independent associations were derived using a simplified joint probability distribution technique. Bayesian Neural Networks were utilized to describe the link between random variables (features) and to concisely and easily specify the joint probability distribution. The research demonstrated that Bayesian networks could effectively explore complex logical linkages by employing probability to represent uncertainty and probabilistic rules;and by applying impact models from Bayesian taxonomies to achieve learning and reasoning processes. 展开更多
关键词 Neural Network Bayesian Neural Network decision support Predictor forecasting decision support Enterprise Architecture
下载PDF
基于BA-SVR混合模型的果蔬生鲜物流需求预测模型研究
9
作者 汪芸芳 史意 陈丽华 《运筹与管理》 CSSCI CSCD 北大核心 2024年第4期200-205,I0070-I0074,共11页
本文通过构建BA-SVR混合模型对果蔬生鲜物流需求进行预测研究。首先通过互联网大数据搜索技术构建果蔬生鲜需求指数相关网络关键词词库,进而采用皮尔森(Pearson)相关分析和逐步回归选择预测因子。其次,结合果蔬自身特点以及物流市场变... 本文通过构建BA-SVR混合模型对果蔬生鲜物流需求进行预测研究。首先通过互联网大数据搜索技术构建果蔬生鲜需求指数相关网络关键词词库,进而采用皮尔森(Pearson)相关分析和逐步回归选择预测因子。其次,结合果蔬自身特点以及物流市场变动因素,提出了果蔬生鲜物流指数(Fruit&Vegetable Logistic Index, FVLI)概念,分析了FVLI变动的影响变量,使其成为反映物流市场信息变动的重要指标。再次,利用蝙蝠算法(Bat Algorithm, BA)自动更新迭代参数的优势,将其引入到支持向量回归(Support Vector Regression, SVR)模型中,用于优化SVR模型中自由参数值,进而构建BA-SVR混合模型对北京市果蔬生鲜需求变化趋势进行模拟仿真及实证预测。最后根据构建的性能预测指标,通过确立的基准模型与其进行对比,评估BA-SVR混合模型性能的优劣,从而提出一种可以用于果蔬生鲜物流信息短期预测的改进方法。 展开更多
关键词 果蔬生鲜物流指数 物流需求预测 支持向量机 皮尔逊交叉法 蝙蝠算法
下载PDF
煤层气产量预测分析决策支持系统在上下游一体化项目生产管理中的应用
10
作者 李彦忱 刘杰 王箴 《石油科技论坛》 2024年第3期104-111,共8页
通过海量生产数据开展煤层气产量预测是上下游一体化大型项目管理中面临的挑战之一,针对该难题,中国石化集团国际石油勘探开发有限公司海外技术团队研发了煤层气产量预测分析决策支持系统。该系统以SQL、Spotfire、OFM及Enersight等主... 通过海量生产数据开展煤层气产量预测是上下游一体化大型项目管理中面临的挑战之一,针对该难题,中国石化集团国际石油勘探开发有限公司海外技术团队研发了煤层气产量预测分析决策支持系统。该系统以SQL、Spotfire、OFM及Enersight等主要应用软件为底层平台,通过二次开发及整合,搭建了数据整合、数据分析、预测转化及成果应用4个主要模块,以煤层气产量预测复杂性及经常出现的问题为切入点,开展煤层气产量预测综合分析、类比分析及递减分析,实现对产量预测的高效管理。该系统具有方便快捷、固定流程、分工明确、团队协作的特点。通过应用实例,展示了该系统针对海量生产数据,自上而下、由面到点、聚焦关键领域,高效筛查出产量预测的关键问题,并提出可行的修正方案,有效提升了煤层气产量预测精准度,为项目投资决策提供有力支持和保障。 展开更多
关键词 煤层气 产量预测 递减分析 上下游一体化 决策支持
下载PDF
从模型到应用:基于生态系统服务权衡的乡村生态修复规划工具研究
11
作者 董楠楠 王怡琪 +4 位作者 Harald Zepp Lars Gruenhagen Malte Bührs Christin Busch 魏维轩 《园林》 2024年第3期4-12,共9页
在全球范围内的气候变化背景下,具有多种功能和服务价值的乡村生态空间成为当下国际生态规划研究与合作的关注热点之一。为实现乡村生态空间的精准管理与规划,中德双方围绕联合课题“生态系统服务概念在德国鲁尔与中国大都市区韧性发展... 在全球范围内的气候变化背景下,具有多种功能和服务价值的乡村生态空间成为当下国际生态规划研究与合作的关注热点之一。为实现乡村生态空间的精准管理与规划,中德双方围绕联合课题“生态系统服务概念在德国鲁尔与中国大都市区韧性发展模式下的绿色基础设施规划应用”进行了深入探索。在土地利用与土地覆盖类型的基础上,进一步识别了生物群落类型,并基于调节、供给、文化三大生态系统服务类型,选取了评估生态系统服务供需权衡的指标和对应权重,构建了乡村生态空间规划场景下的生态系统服务价值评测模型。以上海市水库村为例,运用该课题的评测模型,初步评估了典型乡村生态规划场景下的生态系统服务价值。最后,从应用尺度、研究范围以及操作流程三个方面总结了该评测模型的优化方向。 展开更多
关键词 乡村 生态修复 生态系统服务 供需权衡 决策辅助工具
下载PDF
基于GA-SVR的管网异常漏损检测 被引量:2
12
作者 杨辉斌 郑德仁 +3 位作者 王贺龙 温进化 苏龙强 李进兴 《水电能源科学》 北大核心 2024年第3期133-136,53,共5页
为快速、准确定位供水管网异常漏损所在位置,减少水资源流失和降低漏损检测成本,以A村为例,在区域管网分区计量的基础上,采用遗传算法(GA)优化支持向量回归(SVR)模型,建立基于GA-SVR的水量预测模型,进而分析模型预测水量与实际水量之间... 为快速、准确定位供水管网异常漏损所在位置,减少水资源流失和降低漏损检测成本,以A村为例,在区域管网分区计量的基础上,采用遗传算法(GA)优化支持向量回归(SVR)模型,建立基于GA-SVR的水量预测模型,进而分析模型预测水量与实际水量之间的差异性,从而识别区域管网异常漏损情况,构建区域管网异常漏损检测模型。结果显示,基于GA-SVR的水量预测模型,其测试期的平均纳什效率系数为0.891;管网异常漏损识别准确率为91.7%。结果表明,构建的GA-SVR管网异常漏损检测模型,其异常漏损识别程度较高,实际应用效果良好,结合区域管网分区计量方法,可实现漏损的快速识别和定位。 展开更多
关键词 漏损检测 支持向量回归 遗传算法 水量预测
下载PDF
老年脑卒中患者卒中后认知功能障碍风险预测模型的决策曲线分析 被引量:1
13
作者 任继风 谈洪蕾 +3 位作者 王晓丽 赵明媚 王婷婷 梅喜庆 《中华老年心脑血管病杂志》 CAS 北大核心 2024年第4期431-435,共5页
目的基于血清代谢指标建立老年脑卒中患者卒中后认知功能障碍的风险预测模型,采用决策曲线分析其风险模型的预测价值。方法选取2019年8月至2022年8月青岛市中心医院神经外科收治的老年脑卒中患者297例,根据随访结果,最终纳入294例,按照... 目的基于血清代谢指标建立老年脑卒中患者卒中后认知功能障碍的风险预测模型,采用决策曲线分析其风险模型的预测价值。方法选取2019年8月至2022年8月青岛市中心医院神经外科收治的老年脑卒中患者297例,根据随访结果,最终纳入294例,按照3:1比例将其分为训练集206例和验证集88例。训练集根据是否发生认知功能障碍分为认知障碍组88例和非认知障碍组118例。采用logistic回归分析老年脑卒中患者卒中后发生认知功能障碍的影响因素,并构建logistic回归预测模型,通过R4.1.3绘制列线图对logistic回归预测模型进行可视化处理,并采用ROC曲线、决策曲线分析logistic回归模型预测效能,通过验证集验证该模型的预测效能。结果多因素logistic回归分析显示,训练集三酰甘油(TG,OR=1.266,95%CI:1.089~1.471,P=0.002)、低密度脂蛋白胆固醇(LDL-C,OR=1.321,95%CI:1.136~1.537,P=0.000)、血清胱抑素C(Cys C,OR=1.847,95%CI:1.421~2.401,P=0.000)、淀粉样蛋白A(SAA,OR=1.120,95%CI:1.057~1.187,P=0.000)是老年脑卒中患者卒中后发生认知功能障碍的独立危险因素。ROC曲线显示,训练集中TG、LDL-C、Cys C以及SAA对老年脑卒中后认知功能障碍预测的曲线下面积(AUC)分别为0.732、0.726、0.756、0.736,联合预测的AUC为0.891。验证集中TG、LDL-C、Cys C以及SAA对老年脑卒中后认知功能障碍预测的AUC分别为0.759、0.703、0.769、0.756,联合预测的AUC为0.914。2种模型预测的一致性较好,联合预测模型在训练集和验证集中的准确性分别为83.98%、86.36%,均高于单项指标预测模型。决策曲线分析显示,训练集和验证集的阈值概率分别为11%~48%和13%~45%,此时对老年脑卒中患者进行临床干预后可能受益最大。结论TG、LDL-C、Cys C以及SAA是老年脑卒中患者卒中后发生认知功能障碍的独立危险因素,基于血清代谢指标建立的联合决策曲线预测模型具有较高的预测效能。 展开更多
关键词 卒中 认知功能障碍 比例危险度模型 预测 LOGISTIC模型 决策支持技术
下载PDF
基于LSTM的溶解氧滚动预报预警平台构建——以珠江三角洲典型河段为例
14
作者 胡艳芳 陈昭婷 +2 位作者 赵长进 李小宝 胡浩锋 《环境保护科学》 CAS 2024年第5期163-169,共7页
溶解氧是衡量水环境质量的综合性指标,也是近几年影响珠三角水环境质量达标的关键因子之一,实现对溶解氧的准确预测并嵌入到环境决策支持系统,对于区域水环境管理工作意义重大。考虑到传统的机理模型计算复杂,需要的数据获取难度大,对... 溶解氧是衡量水环境质量的综合性指标,也是近几年影响珠三角水环境质量达标的关键因子之一,实现对溶解氧的准确预测并嵌入到环境决策支持系统,对于区域水环境管理工作意义重大。考虑到传统的机理模型计算复杂,需要的数据获取难度大,对于大数据时代下智能化的水质预测问题并不适用,因此利用断面自动站连续观测数据构建了长短时记忆网络(LSTM)模型,实现了对珠三角典型河段溶解氧的滚动预测,并按照数据层、应用层和表现层的规范设计研发了珠江三角洲典型河段溶解氧滚动预报预警平台。该平台能够直观、实时、动态展示珠三角溶解氧时空变化,并基于溶解氧预测结果进行分级预警,将为区域水环境管理提供科学有效的技术支撑。 展开更多
关键词 环境决策支持系统 溶解氧 滚动预报 LSTM 珠三角
下载PDF
基于SVM的区域物流需求建模与预测仿真——以浙江省为例
15
作者 梁毅 徐超飞 《物流研究》 2024年第3期54-60,共7页
为了提升区域物流需求预测的准确度,提出了一种基于支持向量机的物流需求预测方法。首先,通过主成分分析法对区域物流需求影响指标进行筛选,然后输入样本数据进行学习,最终建立区域物流需求与影响指标之间的非线性模型。基于浙江省2002... 为了提升区域物流需求预测的准确度,提出了一种基于支持向量机的物流需求预测方法。首先,通过主成分分析法对区域物流需求影响指标进行筛选,然后输入样本数据进行学习,最终建立区域物流需求与影响指标之间的非线性模型。基于浙江省2002—2021年的物流需求进行仿真分析,结果显示,相比于BP神经网络,SVM在区域物流需求预测方面有更高的预测精度,具有广泛的应用前景。 展开更多
关键词 区域需求预测 SVM 影响因素 BP神经网络
下载PDF
城乡用地需求预测及优化配置研究
16
作者 杨赟澎 《科学技术创新》 2024年第16期147-150,共4页
为了预测并优化城乡用地需求量,确保土地资源的合理利用与区域可持续发展,文章依托具体案例,构建了灰色-马尔可夫链模型,采用多目标决策分析方法,结合人口增长、经济发展需求和生态保护等因素,系统分析城乡用地需求。研究结果表明,通过... 为了预测并优化城乡用地需求量,确保土地资源的合理利用与区域可持续发展,文章依托具体案例,构建了灰色-马尔可夫链模型,采用多目标决策分析方法,结合人口增长、经济发展需求和生态保护等因素,系统分析城乡用地需求。研究结果表明,通过模型预测的用地需求量与实际发展趋势高度吻合,信息熵原理的应用进一步验证了预测结果的可靠性。基于预测结果,提出了用地类型划分、区域分配、空间配置优化等策略,包括促进城市内部空间集约化发展、构建生态网络、推广多功能土地利用等,为城乡用地规划提供了科学依据,对促进区域可持续发展具有重要意义。 展开更多
关键词 城乡用地 需求预测 灰色-马尔可夫链模型 空间优化配置 多目标决策
下载PDF
The Research on and Application of the Multi-regression Technique in the Course of the Marketing Decision-making of Enterprises
17
作者 QIU Xiao-dong, ZHAO Ping (School of Economics & Management, Tsinghua University, Beijing 100084 , China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期221-222,共2页
The reformation of the economy system has led the f un ctional department and status of the enterprises into a variable state. Under th e condition of the market economy, the kernel of the enterprises’ functional dep... The reformation of the economy system has led the f un ctional department and status of the enterprises into a variable state. Under th e condition of the market economy, the kernel of the enterprises’ functional dep artment has diverted to that of marketing decision-making, which face to market and meet with the need of consumption. Assuredly, the kernel of marketing decis ion-making is to prognosticate the future market demand of the production of en terprises accurately, so that it can ensure and realize the maximum of the enter prises’ profit increase. Using empirical research and the multi-regression technique, this paper ana lyzes the enterprises’ production demand forecast of the GMC (Global Management Challenge, held every year globally) and changes most of uncontrollable factors of demand forecast to the controllable ones of the enterprises. The method we us ed to forecast demand by using the multi-regression technique is as follows: 1. Look for the main factors which influence the demand of productions; 2. Establish the regression model; 3. Using the historical data, find the resolution of the correlative index an d do the prominent test; 4. Analyze and compare, regression, adjust parameter and optimize the regress ion model. Our method will make the forecast data closer to the actual prices of the future market requirement quantity in the production marketing decision-making of the enterprises and realize the optimizing combination and the working object w ith the minimum of the cost and the maximum of the profit. And it can ensure the realization of the equity maximum of the enterprises and increase the lifecycle of the production. 展开更多
关键词 marketing decision-making demand forecast corr elative index multi-regression technique
下载PDF
基于大数据的物资需求预测与采购决策模型研究
18
作者 贺鹏 《科学与信息化》 2024年第6期59-61,共3页
本文首先分析了物资需求预测的现状和挑战;然后提出了基于大数据的物资需求预测模型的优化与验证方法,包括模型框架选择、优化和性能评估等;接着构建了基于预测结果的优化物资采购决策模型,并通过模拟实验验证了其效果;最后提出了保障... 本文首先分析了物资需求预测的现状和挑战;然后提出了基于大数据的物资需求预测模型的优化与验证方法,包括模型框架选择、优化和性能评估等;接着构建了基于预测结果的优化物资采购决策模型,并通过模拟实验验证了其效果;最后提出了保障性措施,包括数字化环境保障、专业模型架构人才保障和制度保障,以确保物资需求预测与采购决策模型的有效发挥。 展开更多
关键词 大数据 物资需求预测 采购决策模型
下载PDF
人工智能在航空货运决策优化中的实践
19
作者 李依晨 《产业科技创新》 2024年第3期72-74,共3页
随着全球经济的快速发展和国际贸易的不断增长,航空货运作为物流行业的重要组成部分,面临着越来越多的挑战和机遇。人工智能(AI)技术的发展为航空货运决策优化提供了新的解决方案。本文综合分析了人工智能在航空货运中的应用,包括需求... 随着全球经济的快速发展和国际贸易的不断增长,航空货运作为物流行业的重要组成部分,面临着越来越多的挑战和机遇。人工智能(AI)技术的发展为航空货运决策优化提供了新的解决方案。本文综合分析了人工智能在航空货运中的应用,包括需求预测与容量规划、货物跟踪与管理以及价格优化与收益管理,并探讨了AI技术对提升决策速度与效率、降低成本与运营优化、风险管理与应对策略的影响。本文还展望了AI在航空货运领域的未来发展趋势及面临的挑战,为行业的持续创新和发展提供了见解。 展开更多
关键词 人工智能 航空货运 决策优化 需求预测 风险管理 动态定价
下载PDF
基于大数据的电力调度决策支持系统研究
20
作者 李志华 《通信电源技术》 2024年第14期55-57,共3页
电力系统的复杂性和不确定性增加导致传统的电力调度方式难以满足现代电力系统的需求。因此,文章探讨基于大数据的电力调度决策支持系统和大数据技术在电力调度中的应用。该平台融合人工智能技术和改进方案增强电能分配的系统性、精确... 电力系统的复杂性和不确定性增加导致传统的电力调度方式难以满足现代电力系统的需求。因此,文章探讨基于大数据的电力调度决策支持系统和大数据技术在电力调度中的应用。该平台融合人工智能技术和改进方案增强电能分配的系统性、精确度与自动化程度,实现对电力负荷预测、发电计划优化、故障诊断与恢复等关键环节的支持。实证研究揭示基于海量数据分析的电力监控决策辅助系统,可以有效增强电力传输网的操作效能和稳定性。 展开更多
关键词 大数据 电力调度 决策支持系统 机器学习 负荷预测
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部