期刊文献+
共找到5,286篇文章
< 1 2 250 >
每页显示 20 50 100
Modeling and scenario prediction of a natural gas demand system based on a system dynamics method 被引量:6
1
作者 Xian-Zhong Mu Guo-Hao Li Guang-Wen Hu 《Petroleum Science》 SCIE CAS CSCD 2018年第4期912-924,共13页
Based on the study of the relationship between structure and feedback of China’s natural gas demand system, this paper establishes a system dynamics model. In order to simulate the total demand and consumption struct... Based on the study of the relationship between structure and feedback of China’s natural gas demand system, this paper establishes a system dynamics model. In order to simulate the total demand and consumption structure of natural gas in China, we set up seven scenarios by changing some of the parameters of the model. The results showed that the total demand of natural gas would increase steadily year by year and reach in the range from 3600 to 4500 billion cubic meters in 2035. Furthermore, in terms of consumption structure, urban gas consumption would still be the largest term, followed by the gas consumption as industrial fuel, gas power generation and natural gas chemical industry. In addition, compared with the population growth, economic development still plays a dominant role in the natural gas demand growth, the impact of urbanization on urban gas consumption is significant, and the promotion of natural gas utilization technology can effectively reduce the total consumption of natural gas. 展开更多
关键词 Natural gas demand system system dynamics Scenario prediction Consumption structure
下载PDF
Estimating the Fresh Vegetables Demand System in Jordan: A Linear Approximate Almost Ideal Demand System
2
作者 A. S. Jabarin E. K. Al-Karablieh 《Journal of Agricultural Science and Technology》 2011年第3期322-331,共10页
The main objective of this research is to estimate the different types of demand elasticities for the main fresh vegetables consumed in Jordan. The estimated elasticities can be used to measure the impacts of agricult... The main objective of this research is to estimate the different types of demand elasticities for the main fresh vegetables consumed in Jordan. The estimated elasticities can be used to measure the impacts of agricultural policies and can be used to predict future consumption in the context of food security in terms of access, availability, stability, and food quality. The reported demand estimates were obtained through the estimation of a Linear Approximate Almost Ideal Demand Systems (LA/AIDS) for Jordan fresh vegetable crops demand system using the most recent cross-sectional data of household expenditure survey in 2005. A censored regression method for the system of equations was used to analyze fresh vegetables consumption patterns. This method allows for inclusion of a large number of zero consumption for some foods through two-step demand system estimation. All of the own-price demand elasticities have the correct negative signs and statistically significant. According to the expenditure elasticity, tomato, cucumber, and potato are the necessity goods. The mean budget shares indicate that consumers spend 30 percent of their allocated budget to vegetables on tomatoes and potatoes. The green bean elasticity is the highest indicating that demand for beans is highly responsive to any changes in the price. The expenditure elasticities reveal that the demand on all vegetables is expected to grow over the coming few years. High own-price elasticities of all vegetables studied suggests that any changes in the prices of these crops could bring about a significant shift in fruits and vegetable constanption patterns. 展开更多
关键词 Vegetable demand system demand elasticities LA/AIDS model Marshallian and Hicksian elasticities censored regression probit model.
下载PDF
Demand Elasticity for China's Major Imported Agriculture Textile Material Based on Restricted Version of Source Differentiated Almost Ideal Demand System Model
3
作者 TIAN Congying XIAO Haifeng 《Journal of Donghua University(English Edition)》 EI CAS 2018年第4期326-332,共7页
By comparing China's import of major imported agriculture textile material( cotton and wool),the characteristics of import are concluded. On this basis,a restricted version of source differentiated almost ideal de... By comparing China's import of major imported agriculture textile material( cotton and wool),the characteristics of import are concluded. On this basis,a restricted version of source differentiated almost ideal demand system( RSDAIDS) is used to estimate the income and price elasticity of major imported agriculture textile material from the major sources based on the data from 1992 to 2015. The results are shown as follows.( 1) Although the dependency on imported cotton is lower than wool, the fluctuation of cotton import is much more drastic; China's demand for cotton is relatively price elastic with higher expenditure elasticity compared with wool; besides,the existence of complementarity is proved between imported cotton and wool.( 2) According to the import elasticity of cotton,demand for cotton imported from India shows priority over cotton from other sources; demand for cotton imported from America is the most price-sensitive one; substitution among cotton from different sources is weak.( 3) According to the import elasticity of wool,wool imported from Uruguay has bright market prospects. In addition,wool imported from Australia has irreplaceable advantage than that from New Zealand. 展开更多
关键词 AGRICULTURE TEXTILE MATERIAL retricted VERSION of sourcedifferentiated almost ideal demand system (RSDA1DS) MODEL importdemand estimation
下载PDF
Testing the Adding up Condition in Demand Systems
4
作者 Quirino Paris Francesco Caracciolo 《Open Journal of Statistics》 2017年第2期290-304,共15页
A test of the adding up condition in demand systems is crucial for determining whether a share format is admissible when the number of sample goods is smaller than the number of commodity choices available to consumer... A test of the adding up condition in demand systems is crucial for determining whether a share format is admissible when the number of sample goods is smaller than the number of commodity choices available to consumers. This test requires the estimation of a demand system in a quantity format. It cannot be performed when a demand system is specified in share format. The share specification of any demand system is like a straight jacket: once worn, it forces the error covariance matrix to be singular and the adding up condition to hold whether or not the data generating process warrants it. The empirical verification of the adding up hypothesis uses a five-commodity sample selected from the Canadian Family Expenditure Survey with 4847 observations. Three specifications are considered: AIDS (Almost Ideal Demand System), QUAIDS (Quadratic AIDS) and EASI (Exact Affine Stone Index). The hypothesis is rejected in all three cases with a high level of confidence. 展开更多
关键词 Adding up demand systemS Quantity FORMAT SHARE FORMAT
下载PDF
Stochastic programming based coordinated expansion planning of generation,transmission,demand side resources,and energy storage considering the DC transmission system
5
作者 Liang Lu Mingkui Wei +4 位作者 Yuxuan Tao Qing Wang Yuxiao Yang Chuan He Haonan Zhang 《Global Energy Interconnection》 EI CSCD 2024年第1期25-37,共13页
With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage co... With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage coordinated expansion planning model based on stochastic programming was proposed to suppress the impact of wind and solar energy fluctuations.Multiple types of system components,including demand response service entities,converter stations,DC transmission systems,cascade hydropower stations,and other traditional components,have been extensively modeled.Moreover,energy storage systems are considered to improve the accommodation level of renewable energy and alleviate the influence of intermittence.Demand-response service entities from the load side are used to reduce and move the demand during peak load periods.The uncertainties in wind,solar energy,and loads were simulated using stochastic programming.Finally,the effectiveness of the proposed model is verified through numerical simulations. 展开更多
关键词 Hydro-wind-solar complementary Expansion planning demand response Energy storage system Source-network-demand-storage coordination
下载PDF
Physics Guided Deep Learning-Based Model for Short-Term Origin–Destination Demand Prediction in Urban Rail Transit Systems Under Pandemic
6
作者 Shuxin Zhang Jinlei Zhang +3 位作者 Lixing Yang Feng Chen Shukai Li Ziyou Gao 《Engineering》 SCIE EI CAS CSCD 2024年第10期276-296,共21页
Accurate origin–destination(OD)demand prediction is crucial for the efficient operation and management of urban rail transit(URT)systems,particularly during a pandemic.However,this task faces several limitations,incl... Accurate origin–destination(OD)demand prediction is crucial for the efficient operation and management of urban rail transit(URT)systems,particularly during a pandemic.However,this task faces several limitations,including real-time availability,sparsity,and high-dimensionality issues,and the impact of the pandemic.Consequently,this study proposes a unified framework called the physics-guided adaptive graph spatial–temporal attention network(PAG-STAN)for metro OD demand prediction under pandemic conditions.Specifically,PAG-STAN introduces a real-time OD estimation module to estimate real-time complete OD demand matrices.Subsequently,a novel dynamic OD demand matrix compression module is proposed to generate dense real-time OD demand matrices.Thereafter,PAG-STAN leverages various heterogeneous data to learn the evolutionary trend of future OD ridership during the pandemic.Finally,a masked physics-guided loss function(MPG-loss function)incorporates the physical quantity information between the OD demand and inbound flow into the loss function to enhance model interpretability.PAG-STAN demonstrated favorable performance on two real-world metro OD demand datasets under the pandemic and conventional scenarios,highlighting its robustness and sensitivity for metro OD demand prediction.A series of ablation studies were conducted to verify the indispensability of each module in PAG-STAN. 展开更多
关键词 Short-term origin-destination demand prediction Urban rail transit PANDEMIC Physics-guided deep learning
下载PDF
Overview of the Global Electricity System in Oman Considering Energy Demand Model Forecast
7
作者 Ahmed Al-Abri Kenneth E.Okedu 《Energy Engineering》 EI 2023年第2期409-423,共15页
Lately,in modern smart power grids,energy demand for accurate forecast of electricity is gaining attention,with increased interest of research.This is due to the fact that a good energy demand forecast would lead to p... Lately,in modern smart power grids,energy demand for accurate forecast of electricity is gaining attention,with increased interest of research.This is due to the fact that a good energy demand forecast would lead to proper responses for electricity demand.In addition,proper energy demand forecast would ensure efficient planning of the electricity industry and is critical in the scheduling of the power grid capacity and management of the entire power network.As most power systems are been deregulated and with the rapid introduction and development of smart-metering technologies in Oman,new opportunities may arise considering the efficiency and reliability of the power system;like price-based demand response programs.These programs could either be a large scale for household,commercial or industrial users.However,excellent demand forecasting models are crucial for the deployment of these smart metering in the power grid based on good knowledge of the electricity market structure.Consequently,in this paper,an overview of the Oman regulatory regime,financial mechanism,price control,and distribution system security standard were presented.More so,the energy demand forecast in Oman was analysed,using the econometric model to forecasts its energy peak demand.The energy econometric analysis in this study describes the relationship between the growth of historical electricity consumption and macro-economic parameters(by region,and by tariff),considering a case study of Mazoon Electricity Distribution Company(MZEC),which is one of the major power distribution companies in Oman,for effective energy demand in the power grid. 展开更多
关键词 Energy forecast energy demand load demand power grids electricity sector
下载PDF
Two-Stage Low-Carbon Economic Dispatch of Integrated Demand Response-Enabled Integrated Energy System with Ladder-Type Carbon Trading
8
作者 Song Zhang Wensheng Li +3 位作者 Zhao Li Xiaolei Zhang Zhipeng Lu Xiaoning Ge 《Energy Engineering》 EI 2023年第1期181-199,共19页
Driven by the goal of“carbon neutrality”and“emission peak”,effectively controlling system carbon emissions has become significantly important to governments around the world.To this end,a novel two-stage low-carbo... Driven by the goal of“carbon neutrality”and“emission peak”,effectively controlling system carbon emissions has become significantly important to governments around the world.To this end,a novel two-stage low-carbon economic scheduling framework that considers the coordinated optimization of ladder-type carbon trading and integrated demand response(IDR)is proposed in this paper for the integrated energy system(IES),where the first stage determines the energy consumption plan of users by leveraging the price-based electrical-heat IDR.In contrast,the second stage minimizes the system total cost to optimize the outputs of generations with consideration of the uncertainty of renewables.In addition,to fully exploit the system’s emission reduction potential,a carbon trading cost model with segmented CO_(2) emission intervals is built by introducing a reward-penalty ladder-type carbon trading mechanism,and the flexible thermal comfort elasticity of customers is taken into account by putting forward a predicted mean vote index on the load side.The CPLEX optimizer resolves the two-stage model,and the study results on a modified IES situated in North China show the proposed model can effectively reduce carbon emissions and guarantee economical efficiency operation of the system. 展开更多
关键词 Integrated energy system low-carbon economic dispatch integrated demand response ladder-type carbon trading thermal comfort elasticity
下载PDF
A Distributionally Robust Optimization Scheduling Model for Regional Integrated Energy Systems Considering Hot Dry Rock Co-Generation
9
作者 Hao Qi Mohamed Sharaf +2 位作者 Andres Annuk Adrian Ilinca Mohamed A.Mohamed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1387-1404,共18页
Hot dry rock(HDR)is rich in reserve,widely distributed,green,low-carbon,and has broad development potential and prospects.In this paper,a distributionally robust optimization(DRO)scheduling model for a regionally inte... Hot dry rock(HDR)is rich in reserve,widely distributed,green,low-carbon,and has broad development potential and prospects.In this paper,a distributionally robust optimization(DRO)scheduling model for a regionally integrated energy system(RIES)considering HDR co-generation is proposed.First,the HDR-enhanced geothermal system(HDR-EGS)is introduced into the RIES.HDR-EGS realizes the thermoelectric decoupling of combined heat and power(CHP)through coordinated operation with the regional power grid and the regional heat grid,which enhances the system wind power(WP)feed-in space.Secondly,peak-hour loads are shifted using price demand response guidance in the context of time-of-day pricing.Finally,the optimization objective is established to minimize the total cost in the RIES scheduling cycle and construct a DRO scheduling model for RIES with HDR-EGS.By simulating a real small-scale RIES,the results show that HDR-EGS can effectively promote WP consumption and reduce the operating cost of the system. 展开更多
关键词 Energy harvesting integrated energy systems optimum scheduling time-of-use pricing demand response geothermal energy
下载PDF
A Combination Prediction Model for Short Term Travel Demand of Urban Taxi
10
作者 Mingyuan Li Yuanli Gu +1 位作者 Qingqiao Geng Hongru Yu 《Computers, Materials & Continua》 SCIE EI 2024年第6期3877-3896,共20页
This study proposes a prediction model considering external weather and holiday factors to address the issue of accurately predicting urban taxi travel demand caused by complex data and numerous influencing factors.Th... This study proposes a prediction model considering external weather and holiday factors to address the issue of accurately predicting urban taxi travel demand caused by complex data and numerous influencing factors.The model integrates the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)and Convolutional Long Short Term Memory Neural Network(ConvLSTM)to predict short-term taxi travel demand.The CEEMDAN decomposition method effectively decomposes time series data into a set of modal components,capturing sequence characteristics at different time scales and frequencies.Based on the sample entropy value of components,secondary processing of more complex sequence components after decomposition is employed to reduce the cumulative prediction error of component sequences and improve prediction efficiency.On this basis,considering the correlation between the spatiotemporal trends of short-term taxi traffic,a ConvLSTM neural network model with Long Short Term Memory(LSTM)time series processing ability and Convolutional Neural Networks(CNN)spatial feature processing ability is constructed to predict the travel demand for urban taxis.The combined prediction model is tested on a taxi travel demand dataset in a certain area of Beijing.The results show that the CEEMDAN-ConvLSTM prediction model outperforms the LSTM,Autoregressive Integrated Moving Average model(ARIMA),CNN,and ConvLSTM benchmark models in terms of Symmetric Mean Absolute Percentage Error(SMAPE),Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and R2 metrics.Notably,the SMAPE metric exhibits a remarkable decline of 21.03%with the utilization of our proposed model.These results confirm that our study provides a highly accurate and valid model for taxi travel demand forecasting. 展开更多
关键词 Urban transport taxi travel demand prediction CEEMDAN-ConvLSTM modal components
下载PDF
Optimal dispatching strategy for residential demand response considering load participation
11
作者 Xiaoyu Zhou Xiaofeng Liu +2 位作者 Huai Liu Zhenya Ji Feng Li 《Global Energy Interconnection》 EI CSCD 2024年第1期38-47,共10页
To facilitate the coordinated and large-scale participation of residential flexible loads in demand response(DR),a load aggregator(LA)can integrate these loads for scheduling.In this study,a residential DR optimizatio... To facilitate the coordinated and large-scale participation of residential flexible loads in demand response(DR),a load aggregator(LA)can integrate these loads for scheduling.In this study,a residential DR optimization scheduling strategy was formulated considering the participation of flexible loads in DR.First,based on the operational characteristics of flexible loads such as electric vehicles,air conditioners,and dishwashers,their DR participation,the base to calculate the compensation price to users,was determined by considering these loads as virtual energy storage.It was quantified based on the state of virtual energy storage during each time slot.Second,flexible loads were clustered using the K-means algorithm,considering the typical operational and behavioral characteristics as the cluster centroid.Finally,the LA scheduling strategy was implemented by introducing a DR mechanism based on the directrix load.The simulation results demonstrate that the proposed DR approach can effectively reduce peak loads and fill valleys,thereby improving the load management performance. 展开更多
关键词 Residential demand response Flexible loads Load participation Load aggregator
下载PDF
Demand-Responsive Transportation Vehicle Routing Optimization Based on Two-Stage Method
12
作者 Jingfa Ma Hu Liu Lingxiao Chen 《Computers, Materials & Continua》 SCIE EI 2024年第10期443-469,共27页
Demand-responsive transportation(DRT)is a flexible passenger service designed to enhance road efficiency,reduce peak-hour traffic,and boost passenger satisfaction.However,existing optimization methods for initial pass... Demand-responsive transportation(DRT)is a flexible passenger service designed to enhance road efficiency,reduce peak-hour traffic,and boost passenger satisfaction.However,existing optimization methods for initial passenger requests fall short in addressing real-time passenger needs.Consequently,there is a need to develop realtime DRT route optimization methods that integrate both initial and real-time requests.This paper presents a twostage,multi-objective optimization model for DRT vehicle scheduling.The first stage involves an initial scheduling model aimed at minimizing vehicle configuration,and operational,and CO_(2)emission costs while ensuring passenger satisfaction.The second stage develops a real-time scheduling model to minimize additional operational costs,penalties for time window violations,and costs due to rejected passengers,thereby addressing real-time demands.Additionally,an enhanced genetic algorithm based on Non-dominated Sorting Genetic Algorithm-II(NSGA-II)is designed,incorporating multiple crossover points to accelerate convergence and improve solution efficiency.The proposed scheduling model is validated using a real network in Shanghai.Results indicate that realtime scheduling can serve more passengers,and improve vehicle utilization and occupancy rates,with only a minor increase in total operational costs.Compared to the traditional NSGA-II algorithm,the improved version enhances convergence speed by 31.7%and solution speed by 4.8%.The proposed model and algorithm offer both theoretical and practical guidance for real-world DRT scheduling. 展开更多
关键词 demand responsive transit genetic algorithm muti-objective optimization artificial intelligence applications
下载PDF
Research on Demand Response Potential of Adjustable Loads in Demand Response Scenarios
13
作者 Zhishuo Zhang Xinhui Du +3 位作者 Yaoke Shang Jingshu Zhang Wei Zhao Jia Su 《Energy Engineering》 EI 2024年第6期1577-1605,共29页
To address the issues of limited demand response data,low generalization of demand response potential evaluation,and poor demand response effect,the article proposes a demand response potential feature extraction and ... To address the issues of limited demand response data,low generalization of demand response potential evaluation,and poor demand response effect,the article proposes a demand response potential feature extraction and prediction model based on data mining and a demand response potential assessment model for adjustable loads in demand response scenarios based on subjective and objective weight analysis.Firstly,based on the demand response process and demand response behavior,obtain demand response characteristics that characterize the process and behavior.Secondly,establish a feature extraction and prediction model based on data mining,including similar day clustering,time series decomposition,redundancy processing,and data prediction.The predicted values of each demand response feature on the response day are obtained.Thirdly,the predicted data of various characteristics on the response day are used as demand response potential evaluation indicators to represent different demand response scenarios and adjustable loads,and a demand response potential evaluation model based on subjective and objective weight allocation is established to calculate the demand response potential of different adjustable loads in different demand response scenarios.Finally,the effectiveness of the method proposed in the article is verified through examples,providing a reference for load aggregators to formulate demand response schemes. 展开更多
关键词 demand response potential demand response scenarios data mining adjustable load evaluation system subjective and objective weight allocation
下载PDF
SmartMicro Grid Energy System Management Based on Optimum Running Cost for Rural Communities in Rwanda
14
作者 Fabien Mukundufite Jean Marie Vianney Bikorimana Alexander Kyaruzi Lugatona 《Energy Engineering》 EI 2024年第7期1805-1821,共17页
The governmental electric utility and the private sector are joining hands to meet the target of electrifying all households by 2024.However,the aforementioned goal is challenged by households that are scattered in re... The governmental electric utility and the private sector are joining hands to meet the target of electrifying all households by 2024.However,the aforementioned goal is challenged by households that are scattered in remote areas.So far,Solar Home Systems(SHS)have mostly been applied to increase electricity access in rural areas.SHSs have continuous constraints to meet electricity demands and cannot run income-generating activities.The current research presents the feasibility study of electrifying Remera village with the smart microgrid as a case study.The renewable energy resources available in Remera are the key sources of electricity in that village.The generation capacity is estimated based on the load profile.The microgrid configurations are simulated with HOMER,and the genetic algorithm is used to analyze the optimum cost.By analyzing the impact of operation and maintenance costs,the results show that the absence of subsidies increases the levelized cost of electricity(COE)five times greater than the electricity price from the public utility.The microgrid made up of PV,diesel generator,and batteries proved to be the most viable solution and ensured continuous power supply to customers.By considering the subsidies,COE reaches 0.186$/kWh,a competitive price with electricity from public utilities in Rwanda. 展开更多
关键词 Load demand load profile optimum running cost power demand satisfaction smart meters and smart micro grid
下载PDF
Optimized scheduling of integrated energy systems for low carbon economy considering carbon transaction costs
15
作者 Chao Liu Weiru Wang +2 位作者 Jing Li Xinyuan Liu Yongning Chi 《Global Energy Interconnection》 EI CSCD 2024年第4期377-390,共14页
With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This st... With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This study proposes a low-carbon economic optimization scheduling model for an IES that considers carbon trading costs.With the goal of minimizing the total operating cost of the IES and considering the transferable and curtailable characteristics of the electric and thermal flexible loads,an optimal scheduling model of the IES that considers the cost of carbon trading and flexible loads on the user side was established.The role of flexible loads in improving the economy of an energy system was investigated using examples,and the rationality and effectiveness of the study were verified through a comparative analysis of different scenarios.The results showed that the total cost of the system in different scenarios was reduced by 18.04%,9.1%,3.35%,and 7.03%,respectively,whereas the total carbon emissions of the system were reduced by 65.28%,20.63%,3.85%,and 18.03%,respectively,when the carbon trading cost and demand-side flexible electric and thermal load responses were considered simultaneously.Flexible electrical and thermal loads did not have the same impact on the system performance.In the analyzed case,the total cost and carbon emissions of the system when only the flexible electrical load response was considered were lower than those when only the flexible thermal load response was taken into account.Photovoltaics have an excess of carbon trading credits and can profit from selling them,whereas other devices have an excess of carbon trading and need to buy carbon credits. 展开更多
关键词 demand response Combined cooling Heating and power system Carbon transaction costs Flexible electric and thermal loads Optimal scheduling
下载PDF
A Novel Defender-Attacker-Defender Model for Resilient Distributed Generator Planning with Network Reconfiguration and Demand Response
16
作者 Wenlu Ji Teng Tu Nan Ma 《Energy Engineering》 EI 2024年第5期1223-1243,共21页
To improve the resilience of a distribution system against extreme weather,a fuel-based distributed generator(DG)allocation model is proposed in this study.In this model,the DGs are placed at the planning stage.When a... To improve the resilience of a distribution system against extreme weather,a fuel-based distributed generator(DG)allocation model is proposed in this study.In this model,the DGs are placed at the planning stage.When an extreme event occurs,the controllable generators form temporary microgrids(MGs)to restore the load maximally.Simultaneously,a demand response program(DRP)mitigates the imbalance between the power supply and demand during extreme events.To cope with the fault uncertainty,a robust optimization(RO)method is applied to reduce the long-term investment and short-term operation costs.The optimization is formulated as a tri-level defenderattacker-defender(DAD)framework.At the first level,decision-makers work out the DG allocation scheme;at the second level,the attacker finds the optimal attack strategy with maximum damage;and at the third level,restoration measures,namely distribution network reconfiguration(DNR)and demand response are performed.The problem is solved by the nested column and constraint generation(NC&CG)method and the model is validated using an IEEE 33-node system.Case studies validate the effectiveness and superiority of the proposed model according to the enhanced resilience and reduced cost. 展开更多
关键词 Distribution system RESILIENCE defender-attacker-defender distributed generator demand response microgrids formation
下载PDF
Vehicle routing optimization algorithm based on time windows and dynamic demand
17
作者 LI Jun DUAN Yurong +1 位作者 ZHANG Weiwei ZHU Liyuan 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期369-378,共10页
To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,... To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem. 展开更多
关键词 vehicle routing problem dynamic demand genetic algorithm large-scale neighborhood search time windows
下载PDF
Optimal Bidding Strategies of Microgrid with Demand Side Management for Economic Emission Dispatch Incorporating Uncertainty and Outage of Renewable Energy Sources
18
作者 Mousumi Basu Chitralekha Jena +1 位作者 Baseem Khan Ahmed Ali 《Energy Engineering》 EI 2024年第4期849-867,共19页
In the restructured electricity market,microgrid(MG),with the incorporation of smart grid technologies,distributed energy resources(DERs),a pumped-storage-hydraulic(PSH)unit,and a demand response program(DRP),is a sma... In the restructured electricity market,microgrid(MG),with the incorporation of smart grid technologies,distributed energy resources(DERs),a pumped-storage-hydraulic(PSH)unit,and a demand response program(DRP),is a smarter and more reliable electricity provider.DER consists of gas turbines and renewable energy sources such as photovoltaic systems and wind turbines.Better bidding strategies,prepared by MG operators,decrease the electricity cost and emissions from upstream grid and conventional and renewable energy sources(RES).But it is inefficient due to the very high sporadic characteristics of RES and the very high outage rate.To solve these issues,this study suggests non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ)for an optimal bidding strategy considering pumped hydroelectric energy storage and DRP based on outage conditions and uncertainties of renewable energy sources.The uncertainty related to solar and wind units is modeled using lognormal and Weibull probability distributions.TOU-based DRP is used,especially considering the time of outages along with the time of peak loads and prices,to enhance the reliability of MG and reduce costs and emissions. 展开更多
关键词 MICRO-GRID distributed energy resources demand response program UNCERTAINTY OUTAGE
下载PDF
Demand and Analysis of Clinical Research Curriculum in Medical Universities
19
作者 Jingxuan Liu Li Wang 《Journal of Clinical and Nursing Research》 2024年第7期296-302,共7页
Objective:To investigate the needs of medical students regarding clinical research curricula to provide scientifically sound offerings and cultivate their clinical research thinking.Methods:From June to October 2022,m... Objective:To investigate the needs of medical students regarding clinical research curricula to provide scientifically sound offerings and cultivate their clinical research thinking.Methods:From June to October 2022,medical students at medical universities in Shaanxi Province were surveyed using online questionnaires.The survey covered their demographic information,awareness of their major,understanding of clinical research,and preferences for curriculum content.Results:A total of 341 valid questionnaires were analyzed.Medical students demonstrated a strong awareness of their majors but a relatively low awareness of clinical research.There was significant demand for clinical research courses,with preferences for professionally oriented(81.8%),market-oriented(100%),theoretically and practically integrated teaching(78.6%),and application-focused(73.0%)courses.Conclusion:Medical colleges and universities should align clinical research curricula with the actual needs of medical students and clinical practice.Reforms in curriculum design and teaching methods are essential to better prepare students for careers in public health. 展开更多
关键词 Medical college Clinical research CURRICULUM demand ANALYSIS
下载PDF
Survey on the Demand for Elderly Care Services of Community Residents in Beijing and Analysis of Influencing Factors
20
作者 Yue Zhai Xianguo Bi +3 位作者 Weimin Liu Hong Wang Xinxin Zhang Jing Chen 《Journal of Clinical and Nursing Research》 2024年第4期79-87,共9页
Objective: To investigate the current situation of the demand for geriatric care services of community residents in Beijing and analyze the influencing factors to provide a reference basis for meeting the demand for d... Objective: To investigate the current situation of the demand for geriatric care services of community residents in Beijing and analyze the influencing factors to provide a reference basis for meeting the demand for diversified and professional geriatric care services. Methods: A self-made questionnaire was used to randomly survey 1558 elderly individuals at community health service centers in 8 urban districts where elderly care centers were planned to be built. The influencing factors of the different characteristics of elderly care service needs from three aspects were analyzed using a dichotomous logistic regression model: predisposing, enabling, and, need factors. Results: 69.7% of the elderly required home care services, 22.8% wanted to get care services at elderly care centers, 15.9% wanted to get care services at nursing homes, 12.3% required community care services, and 7.4% didn’t know where to access care services. 68.5% of the elderly required care services for disabilities/semi-disabilities, 58.0% for dementia, 54.7% for common diseases, 34.9% for rehabilitation training, 33.0% for plumbing care, and 7.5% for hospice care. At the same time, there were urban- rural differences in the demand for elderly care services, with suburban elderly having a higher demand for care services than those living in urban areas (P < 0.05). The elderly’s demand for care services was mainly related to age, place of residence, and gender in the causative factors, mode of residence and physical condition among able factors, and mode of care services and care needs among need factors (P < 0.05). Conclusion: The demand for elderly care services was differentiated by factors including place of residence, age, and gender. It is crucial to accurately match the demand for elderly care services, innovate the mode of elderly care services, and improve the service quality to improve the elderly health service system. 展开更多
关键词 Elderly care Service system demand Population ageing Influencing factors
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部