The underwater wireless optical communication(UWOC)system has gradually become essential to underwater wireless communication technology.Unlike other existing works on UWOC systems,this paper evaluates the proposed ma...The underwater wireless optical communication(UWOC)system has gradually become essential to underwater wireless communication technology.Unlike other existing works on UWOC systems,this paper evaluates the proposed machine learningbased signal demodulation methods through the selfbuilt experimental platform.Based on such a platform,we first construct a real signal dataset with ten modulation methods.Then,we propose a deep belief network(DBN)-based demodulator for feature extraction and multi-class feature classification.We also design an adaptive boosting(Ada Boost)demodulator as an alternative scheme without feature filtering for multiple modulated signals.Finally,it is demonstrated by extensive experimental results that the Ada Boost demodulator significantly outperforms the other algorithms.It also reveals that the demodulator accuracy decreases as the modulation order increases for a fixed received optical power.A higher-order modulation may achieve a higher effective transmission rate when the signal-to-noise ratio(SNR)is higher.展开更多
To increase the storage capacity in holographic data storage(HDS),the information to be stored is encoded into a complex amplitude.Fast and accurate retrieval of amplitude and phase from the reconstructed beam is nece...To increase the storage capacity in holographic data storage(HDS),the information to be stored is encoded into a complex amplitude.Fast and accurate retrieval of amplitude and phase from the reconstructed beam is necessary during data readout in HDS.In this study,we proposed a complex amplitude demodulation method based on deep learning from a single-shot diffraction intensity image and verified it by a non-interferometric lensless experiment demodulating four-level amplitude and four-level phase.By analyzing the correlation between the diffraction intensity features and the amplitude and phase encoding data pages,the inverse problem was decomposed into two backward operators denoted by two convolutional neural networks(CNNs)to demodulate amplitude and phase respectively.The experimental system is simple,stable,and robust,and it only needs a single diffraction image to realize the direct demodulation of both amplitude and phase.To our investigation,this is the first time in HDS that multilevel complex amplitude demodulation is achieved experimentally from one diffraction intensity image without iterations.展开更多
基金supported by the major key project of Peng Cheng Laboratory under grant PCL2023AS31 and PCL2023AS1-2the National Key Research and Development Program of China(No.2019YFA0706604)the Natural Science Foundation(NSF)of China(Nos.61976169,62293483,62371451)。
文摘The underwater wireless optical communication(UWOC)system has gradually become essential to underwater wireless communication technology.Unlike other existing works on UWOC systems,this paper evaluates the proposed machine learningbased signal demodulation methods through the selfbuilt experimental platform.Based on such a platform,we first construct a real signal dataset with ten modulation methods.Then,we propose a deep belief network(DBN)-based demodulator for feature extraction and multi-class feature classification.We also design an adaptive boosting(Ada Boost)demodulator as an alternative scheme without feature filtering for multiple modulated signals.Finally,it is demonstrated by extensive experimental results that the Ada Boost demodulator significantly outperforms the other algorithms.It also reveals that the demodulator accuracy decreases as the modulation order increases for a fixed received optical power.A higher-order modulation may achieve a higher effective transmission rate when the signal-to-noise ratio(SNR)is higher.
基金We are grateful for financial supports from National Key Research and Development Program of China(2018YFA0701800)Project of Fujian Province Major Science and Technology(2020HZ01012)+1 种基金Natural Science Foundation of Fujian Province(2021J01160)National Natural Science Foundation of China(62061136005).
文摘To increase the storage capacity in holographic data storage(HDS),the information to be stored is encoded into a complex amplitude.Fast and accurate retrieval of amplitude and phase from the reconstructed beam is necessary during data readout in HDS.In this study,we proposed a complex amplitude demodulation method based on deep learning from a single-shot diffraction intensity image and verified it by a non-interferometric lensless experiment demodulating four-level amplitude and four-level phase.By analyzing the correlation between the diffraction intensity features and the amplitude and phase encoding data pages,the inverse problem was decomposed into two backward operators denoted by two convolutional neural networks(CNNs)to demodulate amplitude and phase respectively.The experimental system is simple,stable,and robust,and it only needs a single diffraction image to realize the direct demodulation of both amplitude and phase.To our investigation,this is the first time in HDS that multilevel complex amplitude demodulation is achieved experimentally from one diffraction intensity image without iterations.