Adolescent binge drinking leads to long-lasting disorders of the adult central nervous system,particularly aberrant hippocampal neurogenesis.In this study,we applied in vivo fluorescent tracing using NestinCreERT2::Ro...Adolescent binge drinking leads to long-lasting disorders of the adult central nervous system,particularly aberrant hippocampal neurogenesis.In this study,we applied in vivo fluorescent tracing using NestinCreERT2::Rosa26-tdTomato mice and analyzed the endogenous neurogenesis lineage progression of neural stem cells(NSCs)and dendritic spine formation of newborn neurons in the subgranular zone of the dentate gyrus.We found abnormal orientation of tamoxifen-induced tdTomato+(tdTom^(+))NSCs in adult mice 2 months after treatment with EtOH(5.0 g/kg,i.p.)for 7 consecutive days.EtOH markedly inhibited tdTom^(+)NSCs activation and hippocampal neurogenesis in mouse dentate gyrus from adolescence to adulthood.EtOH(100 mM)also significantly inhibited the proliferation to 39.2%and differentiation of primary NSCs in vitro.Adult mice exposed to EtOH also exhibited marked inhibitions in dendritic spine growth and newborn neuron maturation in the dentate gyrus,which was partially reversed by voluntary running or inhibition of the mammalian target of rapamycinenhancer of zeste homolog 2 pathway.In vivo tracing revealed that EtOH induced abnormal orientation of tdTom+NSCs and spatial misposition defects of newborn neurons,thus causing the disturbance of hippocampal neurogenesis and dendritic spine remodeling in mice.展开更多
Colorectal cancer(CRC)is the third most common cancer and the second leading cause of cancer-related deaths worldwide.Dendritic cells(DCs)constitute a heterogeneous group of antigen-presenting cells that are important...Colorectal cancer(CRC)is the third most common cancer and the second leading cause of cancer-related deaths worldwide.Dendritic cells(DCs)constitute a heterogeneous group of antigen-presenting cells that are important for initiating and regulating both innate and adaptive immune responses.As a crucial component of the immune system,DCs have a pivotal role in the pathogenesis and clinical treatment of CRC.DCs cross-present tumor-related antigens to activate T cells and trigger an antitumor immune response.However,the antitumor immune function of DCs is impaired and immune tolerance is promoted due to the presence of the tumor microenvironment.This review systematically elucidates the specific characteristics and functions of different DC subsets,as well as the role that DCs play in the immune response and tolerance within the CRC microenvironment.Moreover,how DCs contribute to the progression of CRC and potential therapies to enhance antitumor immunity on the basis of existing data are also discussed,which will provide new perspectives and approaches for immunotherapy in patients with CRC.展开更多
BACKGROUND Blastic plasmacytoid dendritic cell tumor(BPDCN)is a rare and highly invasive lymphohematopoietic tumor that originates from plasmacytoid dendritic cells.BPDCN has an extremely poor prognosis.Skin lesions a...BACKGROUND Blastic plasmacytoid dendritic cell tumor(BPDCN)is a rare and highly invasive lymphohematopoietic tumor that originates from plasmacytoid dendritic cells.BPDCN has an extremely poor prognosis.Skin lesions are usually the first manifestation of BPDCN,although the tumor may also invade the bone marrow,lymph nodes,peripheral blood,and other parts of the body,leading to several other manifestations,requiring further differentiation through skin biopsy and immunohistochemistry.CASE SUMMARY In the present paper,the cases of 2 patients diagnosed with BPDCN are discussed.The immunohistochemistry analysis of these 2 patients revealed positivity for CD4,CD56,and CD123.Currently,no standard chemotherapy regimen is available for BPDCN.Therefore,intensive therapy for acute lymphoblastic leukemia was applied as the treatment method for these 2 cases.CONCLUSION Although allogeneic bone marrow transplantation could be further effective in prolonging the median survival the ultimate prognosis was unfavorable.Future treatment modalities tailored for elderly patients will help prolong survival.展开更多
Objective This study aimed to evaluate whether the onset of the plateau phase of slow hepatitis B surface antigen decline in patients with chronic hepatitis B treated with intermittent interferon therapy is related to...Objective This study aimed to evaluate whether the onset of the plateau phase of slow hepatitis B surface antigen decline in patients with chronic hepatitis B treated with intermittent interferon therapy is related to the frequency of dendritic cell subsets and expression of the costimulatory molecules CD40,CD80,CD83,and CD86.Method This was a cross-sectional study in which patients were divided into a natural history group(namely NH group),a long-term oral nucleoside analogs treatment group(namely NA group),and a plateau-arriving group(namely P group).The percentage of plasmacytoid dendritic cell and myeloid dendritic cell subsets in peripheral blood lymphocytes and monocytes and the mean fluorescence intensity of their surface costimulatory molecules were detected using a flow cytometer.Results In total,143 patients were enrolled(NH group,n=49;NA group,n=47;P group,n=47).The results demonstrated that CD141/CD1c double negative myeloid dendritic cell(DNmDC)/lymphocytes and monocytes(%)in P group(0.041[0.024,0.069])was significantly lower than that in NH group(0.270[0.135,0.407])and NA group(0.273[0.150,0.443]),and CD86 mean fluorescence intensity of DNmDCs in P group(1832.0[1484.0,2793.0])was significantly lower than that in NH group(4316.0[2958.0,5169.0])and NA group(3299.0[2534.0,4371.0]),Adjusted P all<0.001.Conclusion Reduced DNmDCs and impaired maturation may be associated with the onset of the plateau phase during intermittent interferon therapy in patients with chronic hepatitis B.展开更多
Objective:CD8+T cells are the key effector cells in the anti-tumor immune response.The mechanism underlying the infiltration of CD8+T cells in esophageal squamous cell carcinoma(ESCC)has not been clearly elucidated.Me...Objective:CD8+T cells are the key effector cells in the anti-tumor immune response.The mechanism underlying the infiltration of CD8+T cells in esophageal squamous cell carcinoma(ESCC)has not been clearly elucidated.Methods:Fresh ESCC tissues were collected and grouped according to the infiltration density of CD8+T cells.After the transcriptome sequencing on these samples and the combined analyses with The Cancer Genome Atlas(TCGA)ESCC data,a secreted protein DEFB1 was selected to explore its potential role in the infiltration of CD8+T cells.Bioinformatics analyses,histological verification and in vitro experiments were then performed.Results:DEFB1 was highly expressed in ESCC,and the high expression of DEFB1 was an independent risk factor for overall survival.Since the up-regulation or down-regulation of DEFB1 did not affect the proliferation,migration and apoptosis of ESCC cells,we speculated that the oncogenic effect of DEFB1 was achieved by regulating microenvironmental characteristics.Bioinformatics analyses suggested that DEFB1 might play a major role in the inflammatory response and anti-tumor immune response,and correlate to the infiltration of immature dendritic cell(imDC)in ESCC.Histological analyses further confirmed that there were less CD8+T cells infiltrated,less CD83+mature DC(mDC)infiltrated and more CD1a+imDC infiltrated in those ESCC samples with high expression of DEFB1.After the treatment with recombinant DEFB1 protein,the maturation of DC was hindered significantly,followed by the impairment of the killing effects of T cells in both 2D and 3D culture in vitro.Conclusions:Tumor-derived DEFB1 can inhibit the maturation of DC and weaken the function of CD8+T cells,accounting for the immune tolerance in ESCC.The role of DEFB1 in ESCC deserves further exploration.展开更多
BACKGROUND Indeterminate dendritic cell tumor(IDCT)is a rare tumor of immune cells,and IDCT patients without skin lesions are rarely reported.Therefore,the clinical course in this type of patient is unclear,and furthe...BACKGROUND Indeterminate dendritic cell tumor(IDCT)is a rare tumor of immune cells,and IDCT patients without skin lesions are rarely reported.Therefore,the clinical course in this type of patient is unclear,and further research on the underlying pathological mechanisms and appropriate treatments is needed.CASE SUMMARY This study describes a female IDCT patient with bile duct lesions.The strong mimicry of IDCT lesions confused doctors,and consequently,this patient,who had no skin lesions,was first diagnosed with cholangiocarcinoma.Then,she presented with persistent abdominal distension without jaundice.Enlarged mesenteric lymph nodes along with massive ascites were observed in the subsequent imaging examination.However,no tumor cells or pathogens were found in the three subsequent ascites analyses.It took 2 years to reach the correct diagnosis,which was eventually obtained by performing surgery for biopsy of the patient’s abdominal lymph nodes.However,by then,she was already in a cachexic state.Finally,she received a cycle of cyclophosphamide therapy and was advised to visit a hospital specializing in rare diseases.CONCLUSION For IDCT patients without skin lesions,early biopsy is the key to obtaining a correct diagnosis.Moreover,the collective management of IDCT patients is important.Further histological and molecular biology studies based on human specimens are critical for understanding the pathological mechanism of dendritic cell tumors in the future.展开更多
BACKGROUND Blastic plasmacytoid dendritic cell neoplasm(BPDCN)is a rare,highly invasive malignant neoplasm.There is no universally accepted standard of care because of its rarity and the dearth of prospective research...BACKGROUND Blastic plasmacytoid dendritic cell neoplasm(BPDCN)is a rare,highly invasive malignant neoplasm.There is no universally accepted standard of care because of its rarity and the dearth of prospective research.It is still challenging for some patients to achieve persistent clinical remission or cure,despite the success of allogeneic hematopoietic stem cell transplantation(allo-HSCT),indicating that there is still a significant recurrence rate.We report a case of prevention of BPDCN allograft recurrence by azacitidine maintenance therapy and review the relevant literature.CASE SUMMARY We report a 41-year-old man with BPDCN who was admitted to hospital due to skin sclerosis for>5 mo’duration.BPDCN was diagnosed by combined clinical assessment and laboratory examinations.Following diagnosis,the patients underwent induction consolidation chemotherapy to achieve the first complete remission,followed by bridging allo-HSCT.Post-transplantation,azacitidine(75 mg/m2 for 7 d)was administered as maintenance therapy,with repeat administration every 4–6 wk and appropriate extension of the chemotherapy cycle.After 10 cycles,the patient has been disease free for 26 mo after transplantation.Regular assessments of bone marrow morphology,minimal residual disease,full donor chimerism,Epstein–Barr virus,and cytomegalovirus all yielded normal results with no abnormalities detected.CONCLUSION Azacitidine may be a safe and effective maintenance treatment for BPDCN following transplantation because there were no overt adverse events during the course of treatment.展开更多
BACKGROUND Blastic plasmacytoid dendritic cell neoplasm(BPDCN)is a rare and clinically aggressive hematologic malignancy originating from the precursors of plasmacytoid dendritic cells.BPDCN often involves the skin,ly...BACKGROUND Blastic plasmacytoid dendritic cell neoplasm(BPDCN)is a rare and clinically aggressive hematologic malignancy originating from the precursors of plasmacytoid dendritic cells.BPDCN often involves the skin,lymph nodes,and bone marrow,with rapid clinical progression and a poor prognosis.The BPDCN diagnosis is mainly based on the immunophenotype.CASE SUMMARY In this paper,we retrospectively analyzed 2 cases of BPDCN.Both patients were elderly males.The lesions manifested as skin masses.Morphological manifestations included diffuse and dense tumor cell infiltration of the dermis and subcutaneous tissues.Immunohistochemistry staining showed that cluster of differentiation CD4,CD56,CD43,and CD123 were positive.CONCLUSION In this paper,we retrospectively analyzed 2 cases of BPDCN.Both patients were elderly males.The lesions manifested as skin masses.Morphological manifestations included diffuse and dense tumor cell infiltration of the dermis and subcutaneous tissues.Immunohistochemistry staining showed that cluster of differentiation CD4,CD56,CD43,and CD123 were positive.展开更多
We specifically discuss the mechanisms of the pathogenesis,diagnosis,and management of blastic plasmacytoid dendritic cell neoplasm(BPDCN),a rare but aggressive haematologic malignancy characterized by frequent skin m...We specifically discuss the mechanisms of the pathogenesis,diagnosis,and management of blastic plasmacytoid dendritic cell neoplasm(BPDCN),a rare but aggressive haematologic malignancy characterized by frequent skin manifestations and systemic dissemination.The article enriches our understanding of BPDCN through detailed case reports showing the clinical,immunophenotypic,and histopathological features that are critical for diagnosing this disease.These cases highlight the essential role of pathologists in employing advanced immunophenotyping techniques to accurately identify the disease early in its course and guide treatment decisions.Furthermore,we explore the implications of these findings for management strategies,emphasizing the use of targeted therapies such as tagraxofusp and the potential of allogeneic haematopoietic stem cell transplantation in achieving remission.The editorial underscores the importance of interdisciplinary approaches in managing BPDCN,pointing towards a future where precision medicine could significantly improve patient outcomes.展开更多
The three-dimensional(3D)cell culture system has garnered significant attention in recent years as a means of studying cell behavior and tissue development,as opposed to traditional two-dimensional cultures.These syst...The three-dimensional(3D)cell culture system has garnered significant attention in recent years as a means of studying cell behavior and tissue development,as opposed to traditional two-dimensional cultures.These systems can induce specific cell reactions,promote specific tissue functions,and serve as valuable tools for research in tissue engineering,regenerative medicine,and drug discovery.This paper discusses current developments in the field of three-dimensional cell culture and the potential applications of 3D type 1 collagen gels to enhance the growth and maturation of dendritic cells.展开更多
Immune checkpoint inhibitors(ICIs)have significantly improved outcomes for patients with advanced driver-negative non-small cell lung cancer(NSCLC).However,targeted therapy remains the preferred treatment for advanced...Immune checkpoint inhibitors(ICIs)have significantly improved outcomes for patients with advanced driver-negative non-small cell lung cancer(NSCLC).However,targeted therapy remains the preferred treatment for advanced driver-positive NSCLC,including cases with epidermal growth factor receptor(EGFR)mutations.Con-sidering the variability in EGFR-mutant NSCLC,including expression levels of programmed cell death ligand 1(PD-L1),tumor mutation burden(TMB),and other immunological features,the application of immunotherapy in this group is still a subject of investigation.Therefore,we have summarized and analyzed the immunological characteristics and regulatory mechanisms of different EGFR mutations in NSCLC,as well as the current clinical application of immunotherapy in the EGFR-mutant population,to provide a reference for future research.展开更多
Implant materials,as foreign objects to host,can cause various degrees of inflammation in most cases.The inflammation is triggered by a series of immune responses and directly impacts the tissue regeneration process,w...Implant materials,as foreign objects to host,can cause various degrees of inflammation in most cases.The inflammation is triggered by a series of immune responses and directly impacts the tissue regeneration process,which determines the outcome of tissue repair.The immune responses are complex process involving numerous immune cells and can be divide into innate immune and adaptive immune responses.Once materials are implanted,innate immune responses are activated under the mediation of several immune cells(e.g.neutrophils and macrophages),meanwhile immature dendritic cells(imDCs)are recruited to the implant sites to recognize,internalize and process antigens.Upon antigen uptake,imDCs gradually differentiate into mature dendritic cells(mDCs)and migrate to secondary lymph nodes.In the lymph nodes,mDCs present processed antigen peptides to naive T lymphocytes and activate their antigen specific proliferation,resulting in initiation of adaptive immune responses.Due to their key position in the immune system,serving to bridge innate and adaptive immunity,DCs are crucial to guiding and modulating the immune responses caused by implanted materials.Therefore,figuring out the response of DCs to implanted materials and the exact role of DCs in tissue healing processes will provide deeper insight for the rational design of biomaterials.Previous studies on the effects of implants on immune functions of DCs are mainly focused on physical and chemical properties of the materials(e.g.released chemical composition,surface chemistry,substrate stiffness and surface topography).All these factors will change the microenvironment of the tissue around implant materials,which affect the immune functions of DCs.However,the change of microenvironment not only directly derives from the physical and chemical properties of the material(intrinsic),but also indirectly results from the remodeled extracellular matrix(ECM)caused by implanted materials.When blood or tissue fluid contact with materials after implantation,proteins(e.g.fibrin and collagen)will absorb and deposit on the surface of implants,leading to a provisionally stable matrix with microporous fibrous-liked network structure.It means that the remodeled ECM can provide adhesion sites for recruited DCs and form spatial confinement.DCs,as a kind of cells that are extremely sensitive to mechanical stimuli,theoretically,can response to the mechanical stimuli coming from spatial confinement of remodeled ECM,which may lead to a series of modulations in their cell morphologies and immune functions.Then,the remodeled ECM is a non-negligible mechanical cue.However,to the best of our knowledge,there is a lack of a simple and effective model to establish the relationship between the immune functions of DCs and remodeled ECM.Most studies on the responses of DCs to implanted materials are still based on suspension culture model,which is the normal status of DCs in vitro culture systems.In addition,the processes by which DC exerts immune functions(both endocytosis and antigen presentation)are dynamically physical interaction.It means that the changes of DCs’immune functions are highly correlated with the changes of their biomechanical characteristics caused by remodeled ECM.In this work,we have found that the ECM was remodeled by a large amount of fibrin matrix deposited on the surface of implants in the early stage of the inflammations following implantation.Thus,we used non-toxic salmon fibrin hydrogels with microporous fibrous-liked network structure to mimic the deposited fibrin matrix.Then,human monocyte-derived DCs were cultured on the surface and inside of the fibrin hydrogels to mimic the different spatial confinement states of fibrin matrix.Our results indicated that cell morphologies and cytoskeleton structures of DCs were regulated by the spatial confinement of fibrin hydrogels,resulting in generating mechanical stimuli for DCs.Furthermore,we have found that the biomechanical characteristics and the immune functions of both imDCs and mDC were also modulated.Considering the changes in surface markers,secreted cytokines and biomechanical characteristics of DCs,it indicates that the tendency and magnitude of modulations were highly associated with the spatial confinement of fibrin hydrogels.This model demonstrated that mechanical stimuli deriving from spatial confinement of deposited fibrin matrix is an important factor for regulating the biomechanical characteristics and immune functions of DCs.展开更多
Background: We evaluated the clinical and immunological effects of dendritic cell (DC) vaccination of patients with NSCLC. Autologous DCs were pulsed with a MAGE containing allogeneic melanoma cell lysate (MelCancerVa...Background: We evaluated the clinical and immunological effects of dendritic cell (DC) vaccination of patients with NSCLC. Autologous DCs were pulsed with a MAGE containing allogeneic melanoma cell lysate (MelCancerVac?, Dandrit Biotech,Copenhagen,Denmark). Imiquimod cream, proleukin and celecoxib were used as adjuvants to the vaccines. The objective of the study was to evaluate specific T cell response in vitro by IFNg EliSpot. Secondary objectives were overall survival, response and quality of life (QoL). Results: Twenty-two patients initiated the vaccination program consisting of ten vaccinations. Seven patients remained in stable disease (SD) three months after the first vaccination. After ten vaccinations (six months), four patients still showed SD and continued vaccinations on a monthly basis. These four patients received a total of 12, 16, 26 and 35 vaccinations, respectively. Five patients showed an unexpectedly prolonged survival. The treatment was well tolerated and only minor adverse events were reported. Quality of life did not change during the study period. In four of the seven patients with SD, vaccine-specific T cells were detected by IFNγ EliSpot assays, whereas only one patient with progressive disease (PD) showed vaccine-specific responses. Conclusion: This DC-based vaccine trial has indicated a correlation between vaccine-specific immunity and sustained SD. Furthermore, we observed an unexpectedly prolonged survival in some patients, which may indicate delayed effect of DC vaccination after completion of the treatment. A prospective randomized phase-IIb or -III is needed to further evaluate the use of MelCancerVac? vaccine treatment in patients with progressive NSCLC.展开更多
Little information was so far available about allergenic mechanism of the roasted peanut allergens during initial stages of allergy.The purpose of this study was to determine the influence of roasting(150℃,20 min)on ...Little information was so far available about allergenic mechanism of the roasted peanut allergens during initial stages of allergy.The purpose of this study was to determine the influence of roasting(150℃,20 min)on biochemical and biological properties of Ara h 3,a major peanut allergen.Allergenicity of roasted peanut emulsion to mice,differences in uptakes between Ara h 3 purified from raw peanuts(named as Ara h 3-Raw)and that purified from roasted peanuts(named as Ara h 3-Roasted)by bone marrow-derived dendritic cells(BMDCs)and the implication of cell surface receptors involving in uptake,and changes in glycosylation and structure of Ara h 3 after roasting were analyzed in this study.This study suggested that roasting increased allergenicity of peanut to BALB/c mice.Maillard reaction and structural changes of Ara h 3 induced by roasting significantly altered the uptake of Ara h 3-Roasted by BMDCs,and modified Ara h 3 fate in processes involved in immunogenicity and hyper allergenicity,indicating that food processing pattern can change food allergenicity.展开更多
[Objective] This study aimed to investigate the changes of the transcriptional levels of molecules associated with endogenous antigen processing and presenta- tion in porcine skin-derived dendritic cells infected with...[Objective] This study aimed to investigate the changes of the transcriptional levels of molecules associated with endogenous antigen processing and presenta- tion in porcine skin-derived dendritic cells infected with PCV2 in vivo. [Method] Healthy 40-day-old Landrace piglets were infected with porcine circovirus type 2 (PCV2) and euthanized on the 34, 7rd, 14th, 21st and 35th d post inoculation (DPI). The porcine skin-derived dendritic cells (DCs) were collected to analyze the transcrip- tional levels of molecules (LMP7, UBP, MHC-I, calreticulin) associated with endogenous antigen processing and presentation by using real-time fluorescent quantitative PCR (real-time FQ-PCR). [Result] The results showed that the level of LMP7 mR- NAs was reduced significantly on the 3DPI (P〈0.05); the level of UBP mRNAs was consistently up-regulated, which increased significantly on the 21DPI and 35DPI (P〈 0.05); the level of MHC-I mRNAs was significantly down-regulated on the 7DPI (P〈 0.05); the level of calreticulin mRNAs was up-regulated slightly without significant dif- ference. [Conclusion] PCV2 can inhibit the endogenous antigen processing and presentation ability of porcine skin-derived DCs at early stages of infection.展开更多
The immune responses play a profound role in the progression of lung lesions in both infectious and non-infectious diseases.Dendritic cells,as the"frontline"immune cells responsible for antigen presentation,...The immune responses play a profound role in the progression of lung lesions in both infectious and non-infectious diseases.Dendritic cells,as the"frontline"immune cells responsible for antigen presentation,set up a bridge between innate and adaptive immunity in the course of these diseases.Among the receptors equipped in dendritic cells,Toll-like re-ceptors are a group of specialized receptors as one type of pattern recognition receptors,capable of sensing environmental signals including invading pathogens and self-antigens.Toll-like receptor 4,a pivotal member of the Toll-like receptor family,was formerly recognized as a receptor sensitive to the outer membrane component lipopolysaccharide derived from Gram-negative bacteria,triggering the subsequent response.Moreover,its other essential roles in immune responses have drawn significant attention in the past decade.A better under-standing of the implication of Toll-like receptor 4 in dendritic cells could contribute to the management of pulmonary diseases including pneumonia,pulmonary tuberculosis,asthma,acutelung injury,and lung cancer.展开更多
Nanoparticles represent a heterogeneous collection of materials,whether natural or synthetic,with dimensions aligning in the nanoscale.Because of their intense manifestation with the immune system,they can be harveste...Nanoparticles represent a heterogeneous collection of materials,whether natural or synthetic,with dimensions aligning in the nanoscale.Because of their intense manifestation with the immune system,they can be harvested for numerous bio-medical and biotechnological advancements mainly in cancer treatment.This review article aims to scrutinize various types of nanoparticles that interact differently with immune cells like macrophages,dendritic cells,T lymphocytes,and natural killer(NK)cells.It also underscores the importance of knowing how nanoparticles influence immune cell functions,such as the production of cytokines and the presentation of antigens which are crucial for effective cancer immunotherapy.Hence overviews of bio-molecular mechanisms are provided.Nanoparticles can improve antigen presentation,boost T-cell responses,and overcome the immunosuppressive tumor environment.The regulatory mechanisms,signaling pathways,and nanoparticle characteristics are also presented for a comprehensive understanding.We review the nanotechnology platform options and challenges in nanoparticlesbased immunotherapy,from an immunotherapy perspective including precise targeting,immune modulation,and potential toxicity,as well as personalized approaches based on individual patient and tumor characteristics.The development of emerging multifunctional nanoparticles and theranostic nanoparticles will provide new solutions for the precision and efficiency of cancer therapies in next-generation practice.展开更多
[Objective] This study aimed to establish an in vitro culture model for porcine peripheral blood monocyte-derived dendritic cells (MoDCs). [Method] Fresh peripheral blood mononuclear cells (PBMCs) were separated f...[Objective] This study aimed to establish an in vitro culture model for porcine peripheral blood monocyte-derived dendritic cells (MoDCs). [Method] Fresh peripheral blood mononuclear cells (PBMCs) were separated from pig, and precursor dendritic cells were obtained by adherence method. The dendritic cells were treated by recombinant porcine granulocyte-monocyte colony stimulating factor (rpGM-CSF) and recombinant porcine interleukin-4 (rplL-4) together, and lipopolysaccharide (LPS) respectively. The cells in different time periods were collected. The morphology of the collected cells was observed by scanning electron microscopy; the expression of surface molecules and phagocytic ability to FITC-dextran were detected by flow cy- tometry; and the stimulating ability for allogeneic T cells was detected by mixed lymphocyte reaction. [Result] The DCs suffering maturation induction in vitro showed typical dendritic morphology; compared with those of DCs untreated by LPS, the cell surface expression of CDla, CD80, CD86, SLAII and CD172a of DCs treated by LPS was significantly increased, the phagocytic ability was reduced slightly, and the stimulating ability for allogeneic T cells was enhanced to some extent. [Conclusion] An in vitro culture method was successfully established for porcine MoDCs in this study, laying a foundation for further study on the role of porcine MoDCs in immunoregulation and anti-virus infection.展开更多
Plasmacytoid dendritic cells(pDCs)are a pioneer cell type that produces type I interferon(IFN-I)and promotes antiviral immune responses.However,they are tolerogenic and,when recruited to the tumor microenvironment(TME...Plasmacytoid dendritic cells(pDCs)are a pioneer cell type that produces type I interferon(IFN-I)and promotes antiviral immune responses.However,they are tolerogenic and,when recruited to the tumor microenvironment(TME),play complex roles that have long been a research focus.The interactions between p DCs and other components of the TME,whether direct or indirect,can either promote or hinder tumor development;consequently,p DCs are an intriguing target for therapeutic intervention.This review provides a comprehensive overview of p DC crosstalk in the TME,including crosstalk with various cell types,biochemical factors,and microorganisms.An in-depth understanding of p DC crosstalk in TME should facilitate the development of novel p DC-based therapeutic methods.展开更多
The dendritic cell algorithm(DCA)is an excellent prototype for developing Machine Learning inspired by the function of the powerful natural immune system.Too many parameters increase complexity and lead to plenty of c...The dendritic cell algorithm(DCA)is an excellent prototype for developing Machine Learning inspired by the function of the powerful natural immune system.Too many parameters increase complexity and lead to plenty of criticism in the signal fusion procedure of DCA.The loss function of DCA is ambiguous due to its complexity.To reduce the uncertainty,several researchers simplified the algorithm program;some introduced gradient descent to optimize parameters;some utilized searching methods to find the optimal parameter combination.However,these studies are either time-consuming or need to be revised in the case of non-convex functions.To overcome the problems,this study models the parameter optimization into a black-box optimization problem without knowing the information about its loss function.This study hybridizes bayesian optimization hyperband(BOHB)with DCA to propose a novel DCA version,BHDCA,for accomplishing parameter optimization in the signal fusion process.The BHDCA utilizes the bayesian optimization(BO)of BOHB to find promising parameter configurations and applies the hyperband of BOHB to allocate the suitable budget for each potential configuration.The experimental results show that the proposed algorithm has significant advantages over the otherDCAexpansion algorithms in terms of signal fusion.展开更多
基金supported by the National Natural Science Foundation of China,Nos.31601175(to YL),81803508(to KZ),82074056(to JY)the Natural Science Foundation of Liaoning Province of China,No.20180550335(to YL)the Scientific Research Project of Educational Commission of Liaoning Province of China,No.201610163L22(to YL)。
文摘Adolescent binge drinking leads to long-lasting disorders of the adult central nervous system,particularly aberrant hippocampal neurogenesis.In this study,we applied in vivo fluorescent tracing using NestinCreERT2::Rosa26-tdTomato mice and analyzed the endogenous neurogenesis lineage progression of neural stem cells(NSCs)and dendritic spine formation of newborn neurons in the subgranular zone of the dentate gyrus.We found abnormal orientation of tamoxifen-induced tdTomato+(tdTom^(+))NSCs in adult mice 2 months after treatment with EtOH(5.0 g/kg,i.p.)for 7 consecutive days.EtOH markedly inhibited tdTom^(+)NSCs activation and hippocampal neurogenesis in mouse dentate gyrus from adolescence to adulthood.EtOH(100 mM)also significantly inhibited the proliferation to 39.2%and differentiation of primary NSCs in vitro.Adult mice exposed to EtOH also exhibited marked inhibitions in dendritic spine growth and newborn neuron maturation in the dentate gyrus,which was partially reversed by voluntary running or inhibition of the mammalian target of rapamycinenhancer of zeste homolog 2 pathway.In vivo tracing revealed that EtOH induced abnormal orientation of tdTom+NSCs and spatial misposition defects of newborn neurons,thus causing the disturbance of hippocampal neurogenesis and dendritic spine remodeling in mice.
基金This study was supported by grants from the National Natural Science Foundation of China(Grant Nos.82222058,82073197,82273142,and 82173256).
文摘Colorectal cancer(CRC)is the third most common cancer and the second leading cause of cancer-related deaths worldwide.Dendritic cells(DCs)constitute a heterogeneous group of antigen-presenting cells that are important for initiating and regulating both innate and adaptive immune responses.As a crucial component of the immune system,DCs have a pivotal role in the pathogenesis and clinical treatment of CRC.DCs cross-present tumor-related antigens to activate T cells and trigger an antitumor immune response.However,the antitumor immune function of DCs is impaired and immune tolerance is promoted due to the presence of the tumor microenvironment.This review systematically elucidates the specific characteristics and functions of different DC subsets,as well as the role that DCs play in the immune response and tolerance within the CRC microenvironment.Moreover,how DCs contribute to the progression of CRC and potential therapies to enhance antitumor immunity on the basis of existing data are also discussed,which will provide new perspectives and approaches for immunotherapy in patients with CRC.
基金Supported by The National Key Research and Development Programs of China,No.2022YFC2603801Maternal and Child Health Project of Jiangsu Province,No.F201717+1 种基金Doctor Project of Affiliated Hospital of Jiangsu University,No.jdfyrc2019003Clinical and Virology Study of 2019-ncov Infection in Patients with Moderate to Severe Psoriasis,No.Jdfyxgzx005.
文摘BACKGROUND Blastic plasmacytoid dendritic cell tumor(BPDCN)is a rare and highly invasive lymphohematopoietic tumor that originates from plasmacytoid dendritic cells.BPDCN has an extremely poor prognosis.Skin lesions are usually the first manifestation of BPDCN,although the tumor may also invade the bone marrow,lymph nodes,peripheral blood,and other parts of the body,leading to several other manifestations,requiring further differentiation through skin biopsy and immunohistochemistry.CASE SUMMARY In the present paper,the cases of 2 patients diagnosed with BPDCN are discussed.The immunohistochemistry analysis of these 2 patients revealed positivity for CD4,CD56,and CD123.Currently,no standard chemotherapy regimen is available for BPDCN.Therefore,intensive therapy for acute lymphoblastic leukemia was applied as the treatment method for these 2 cases.CONCLUSION Although allogeneic bone marrow transplantation could be further effective in prolonging the median survival the ultimate prognosis was unfavorable.Future treatment modalities tailored for elderly patients will help prolong survival.
基金supported by the National Key Research and Development Program[2022YFC2603500,2022YFC2603505]Capital Clinical Diagnostic Techniques and Translational Application Projects(Z211100002921059)+2 种基金Capital’s Funds for Health Improvement and Research[2022-1-2172]Beijing Hospitals Authority Clinical Medicine Development of Special Funding Support[XMLX 202127]National Science and Technology Major Project of China[2017ZX10203202-003]。
文摘Objective This study aimed to evaluate whether the onset of the plateau phase of slow hepatitis B surface antigen decline in patients with chronic hepatitis B treated with intermittent interferon therapy is related to the frequency of dendritic cell subsets and expression of the costimulatory molecules CD40,CD80,CD83,and CD86.Method This was a cross-sectional study in which patients were divided into a natural history group(namely NH group),a long-term oral nucleoside analogs treatment group(namely NA group),and a plateau-arriving group(namely P group).The percentage of plasmacytoid dendritic cell and myeloid dendritic cell subsets in peripheral blood lymphocytes and monocytes and the mean fluorescence intensity of their surface costimulatory molecules were detected using a flow cytometer.Results In total,143 patients were enrolled(NH group,n=49;NA group,n=47;P group,n=47).The results demonstrated that CD141/CD1c double negative myeloid dendritic cell(DNmDC)/lymphocytes and monocytes(%)in P group(0.041[0.024,0.069])was significantly lower than that in NH group(0.270[0.135,0.407])and NA group(0.273[0.150,0.443]),and CD86 mean fluorescence intensity of DNmDCs in P group(1832.0[1484.0,2793.0])was significantly lower than that in NH group(4316.0[2958.0,5169.0])and NA group(3299.0[2534.0,4371.0]),Adjusted P all<0.001.Conclusion Reduced DNmDCs and impaired maturation may be associated with the onset of the plateau phase during intermittent interferon therapy in patients with chronic hepatitis B.
基金supported by the National Natural Science Foundation of China(No.81972681,82103677)Tianjin Education Commission Research Plan Project(No.2021KJ201)+1 种基金Shenzhen High-level Hospital Construction Fund(No.G2022139)Tianjin Key Medical Discipline(Specialty)Construction Project(No.TJYXZDXK-009A).
文摘Objective:CD8+T cells are the key effector cells in the anti-tumor immune response.The mechanism underlying the infiltration of CD8+T cells in esophageal squamous cell carcinoma(ESCC)has not been clearly elucidated.Methods:Fresh ESCC tissues were collected and grouped according to the infiltration density of CD8+T cells.After the transcriptome sequencing on these samples and the combined analyses with The Cancer Genome Atlas(TCGA)ESCC data,a secreted protein DEFB1 was selected to explore its potential role in the infiltration of CD8+T cells.Bioinformatics analyses,histological verification and in vitro experiments were then performed.Results:DEFB1 was highly expressed in ESCC,and the high expression of DEFB1 was an independent risk factor for overall survival.Since the up-regulation or down-regulation of DEFB1 did not affect the proliferation,migration and apoptosis of ESCC cells,we speculated that the oncogenic effect of DEFB1 was achieved by regulating microenvironmental characteristics.Bioinformatics analyses suggested that DEFB1 might play a major role in the inflammatory response and anti-tumor immune response,and correlate to the infiltration of immature dendritic cell(imDC)in ESCC.Histological analyses further confirmed that there were less CD8+T cells infiltrated,less CD83+mature DC(mDC)infiltrated and more CD1a+imDC infiltrated in those ESCC samples with high expression of DEFB1.After the treatment with recombinant DEFB1 protein,the maturation of DC was hindered significantly,followed by the impairment of the killing effects of T cells in both 2D and 3D culture in vitro.Conclusions:Tumor-derived DEFB1 can inhibit the maturation of DC and weaken the function of CD8+T cells,accounting for the immune tolerance in ESCC.The role of DEFB1 in ESCC deserves further exploration.
文摘BACKGROUND Indeterminate dendritic cell tumor(IDCT)is a rare tumor of immune cells,and IDCT patients without skin lesions are rarely reported.Therefore,the clinical course in this type of patient is unclear,and further research on the underlying pathological mechanisms and appropriate treatments is needed.CASE SUMMARY This study describes a female IDCT patient with bile duct lesions.The strong mimicry of IDCT lesions confused doctors,and consequently,this patient,who had no skin lesions,was first diagnosed with cholangiocarcinoma.Then,she presented with persistent abdominal distension without jaundice.Enlarged mesenteric lymph nodes along with massive ascites were observed in the subsequent imaging examination.However,no tumor cells or pathogens were found in the three subsequent ascites analyses.It took 2 years to reach the correct diagnosis,which was eventually obtained by performing surgery for biopsy of the patient’s abdominal lymph nodes.However,by then,she was already in a cachexic state.Finally,she received a cycle of cyclophosphamide therapy and was advised to visit a hospital specializing in rare diseases.CONCLUSION For IDCT patients without skin lesions,early biopsy is the key to obtaining a correct diagnosis.Moreover,the collective management of IDCT patients is important.Further histological and molecular biology studies based on human specimens are critical for understanding the pathological mechanism of dendritic cell tumors in the future.
文摘BACKGROUND Blastic plasmacytoid dendritic cell neoplasm(BPDCN)is a rare,highly invasive malignant neoplasm.There is no universally accepted standard of care because of its rarity and the dearth of prospective research.It is still challenging for some patients to achieve persistent clinical remission or cure,despite the success of allogeneic hematopoietic stem cell transplantation(allo-HSCT),indicating that there is still a significant recurrence rate.We report a case of prevention of BPDCN allograft recurrence by azacitidine maintenance therapy and review the relevant literature.CASE SUMMARY We report a 41-year-old man with BPDCN who was admitted to hospital due to skin sclerosis for>5 mo’duration.BPDCN was diagnosed by combined clinical assessment and laboratory examinations.Following diagnosis,the patients underwent induction consolidation chemotherapy to achieve the first complete remission,followed by bridging allo-HSCT.Post-transplantation,azacitidine(75 mg/m2 for 7 d)was administered as maintenance therapy,with repeat administration every 4–6 wk and appropriate extension of the chemotherapy cycle.After 10 cycles,the patient has been disease free for 26 mo after transplantation.Regular assessments of bone marrow morphology,minimal residual disease,full donor chimerism,Epstein–Barr virus,and cytomegalovirus all yielded normal results with no abnormalities detected.CONCLUSION Azacitidine may be a safe and effective maintenance treatment for BPDCN following transplantation because there were no overt adverse events during the course of treatment.
文摘BACKGROUND Blastic plasmacytoid dendritic cell neoplasm(BPDCN)is a rare and clinically aggressive hematologic malignancy originating from the precursors of plasmacytoid dendritic cells.BPDCN often involves the skin,lymph nodes,and bone marrow,with rapid clinical progression and a poor prognosis.The BPDCN diagnosis is mainly based on the immunophenotype.CASE SUMMARY In this paper,we retrospectively analyzed 2 cases of BPDCN.Both patients were elderly males.The lesions manifested as skin masses.Morphological manifestations included diffuse and dense tumor cell infiltration of the dermis and subcutaneous tissues.Immunohistochemistry staining showed that cluster of differentiation CD4,CD56,CD43,and CD123 were positive.CONCLUSION In this paper,we retrospectively analyzed 2 cases of BPDCN.Both patients were elderly males.The lesions manifested as skin masses.Morphological manifestations included diffuse and dense tumor cell infiltration of the dermis and subcutaneous tissues.Immunohistochemistry staining showed that cluster of differentiation CD4,CD56,CD43,and CD123 were positive.
基金Supported by The Chongqing Health Commission and Science and Technology Bureau,No.2023MSXM060.
文摘We specifically discuss the mechanisms of the pathogenesis,diagnosis,and management of blastic plasmacytoid dendritic cell neoplasm(BPDCN),a rare but aggressive haematologic malignancy characterized by frequent skin manifestations and systemic dissemination.The article enriches our understanding of BPDCN through detailed case reports showing the clinical,immunophenotypic,and histopathological features that are critical for diagnosing this disease.These cases highlight the essential role of pathologists in employing advanced immunophenotyping techniques to accurately identify the disease early in its course and guide treatment decisions.Furthermore,we explore the implications of these findings for management strategies,emphasizing the use of targeted therapies such as tagraxofusp and the potential of allogeneic haematopoietic stem cell transplantation in achieving remission.The editorial underscores the importance of interdisciplinary approaches in managing BPDCN,pointing towards a future where precision medicine could significantly improve patient outcomes.
文摘The three-dimensional(3D)cell culture system has garnered significant attention in recent years as a means of studying cell behavior and tissue development,as opposed to traditional two-dimensional cultures.These systems can induce specific cell reactions,promote specific tissue functions,and serve as valuable tools for research in tissue engineering,regenerative medicine,and drug discovery.This paper discusses current developments in the field of three-dimensional cell culture and the potential applications of 3D type 1 collagen gels to enhance the growth and maturation of dendritic cells.
基金supported by the Natural Science Foundation of Hubei Province of China(grant number:2022CFB114).
文摘Immune checkpoint inhibitors(ICIs)have significantly improved outcomes for patients with advanced driver-negative non-small cell lung cancer(NSCLC).However,targeted therapy remains the preferred treatment for advanced driver-positive NSCLC,including cases with epidermal growth factor receptor(EGFR)mutations.Con-sidering the variability in EGFR-mutant NSCLC,including expression levels of programmed cell death ligand 1(PD-L1),tumor mutation burden(TMB),and other immunological features,the application of immunotherapy in this group is still a subject of investigation.Therefore,we have summarized and analyzed the immunological characteristics and regulatory mechanisms of different EGFR mutations in NSCLC,as well as the current clinical application of immunotherapy in the EGFR-mutant population,to provide a reference for future research.
基金funded by grants from the National Natural Science Foundation of China ( 31771014, 11762006,31660258,31860262,11762006,81460254 )the 2011 Collaborative Innovation Program of Guizhou Province ( 2015-04)+1 种基金the Science and Technology Innovative Talent Team of Guizhou Province ( 2015-4021)the Science and Technology Foundation of Guizhou Province ( 2018-1412,2016-5676,2017-5718)
文摘Implant materials,as foreign objects to host,can cause various degrees of inflammation in most cases.The inflammation is triggered by a series of immune responses and directly impacts the tissue regeneration process,which determines the outcome of tissue repair.The immune responses are complex process involving numerous immune cells and can be divide into innate immune and adaptive immune responses.Once materials are implanted,innate immune responses are activated under the mediation of several immune cells(e.g.neutrophils and macrophages),meanwhile immature dendritic cells(imDCs)are recruited to the implant sites to recognize,internalize and process antigens.Upon antigen uptake,imDCs gradually differentiate into mature dendritic cells(mDCs)and migrate to secondary lymph nodes.In the lymph nodes,mDCs present processed antigen peptides to naive T lymphocytes and activate their antigen specific proliferation,resulting in initiation of adaptive immune responses.Due to their key position in the immune system,serving to bridge innate and adaptive immunity,DCs are crucial to guiding and modulating the immune responses caused by implanted materials.Therefore,figuring out the response of DCs to implanted materials and the exact role of DCs in tissue healing processes will provide deeper insight for the rational design of biomaterials.Previous studies on the effects of implants on immune functions of DCs are mainly focused on physical and chemical properties of the materials(e.g.released chemical composition,surface chemistry,substrate stiffness and surface topography).All these factors will change the microenvironment of the tissue around implant materials,which affect the immune functions of DCs.However,the change of microenvironment not only directly derives from the physical and chemical properties of the material(intrinsic),but also indirectly results from the remodeled extracellular matrix(ECM)caused by implanted materials.When blood or tissue fluid contact with materials after implantation,proteins(e.g.fibrin and collagen)will absorb and deposit on the surface of implants,leading to a provisionally stable matrix with microporous fibrous-liked network structure.It means that the remodeled ECM can provide adhesion sites for recruited DCs and form spatial confinement.DCs,as a kind of cells that are extremely sensitive to mechanical stimuli,theoretically,can response to the mechanical stimuli coming from spatial confinement of remodeled ECM,which may lead to a series of modulations in their cell morphologies and immune functions.Then,the remodeled ECM is a non-negligible mechanical cue.However,to the best of our knowledge,there is a lack of a simple and effective model to establish the relationship between the immune functions of DCs and remodeled ECM.Most studies on the responses of DCs to implanted materials are still based on suspension culture model,which is the normal status of DCs in vitro culture systems.In addition,the processes by which DC exerts immune functions(both endocytosis and antigen presentation)are dynamically physical interaction.It means that the changes of DCs’immune functions are highly correlated with the changes of their biomechanical characteristics caused by remodeled ECM.In this work,we have found that the ECM was remodeled by a large amount of fibrin matrix deposited on the surface of implants in the early stage of the inflammations following implantation.Thus,we used non-toxic salmon fibrin hydrogels with microporous fibrous-liked network structure to mimic the deposited fibrin matrix.Then,human monocyte-derived DCs were cultured on the surface and inside of the fibrin hydrogels to mimic the different spatial confinement states of fibrin matrix.Our results indicated that cell morphologies and cytoskeleton structures of DCs were regulated by the spatial confinement of fibrin hydrogels,resulting in generating mechanical stimuli for DCs.Furthermore,we have found that the biomechanical characteristics and the immune functions of both imDCs and mDC were also modulated.Considering the changes in surface markers,secreted cytokines and biomechanical characteristics of DCs,it indicates that the tendency and magnitude of modulations were highly associated with the spatial confinement of fibrin hydrogels.This model demonstrated that mechanical stimuli deriving from spatial confinement of deposited fibrin matrix is an important factor for regulating the biomechanical characteristics and immune functions of DCs.
文摘Background: We evaluated the clinical and immunological effects of dendritic cell (DC) vaccination of patients with NSCLC. Autologous DCs were pulsed with a MAGE containing allogeneic melanoma cell lysate (MelCancerVac?, Dandrit Biotech,Copenhagen,Denmark). Imiquimod cream, proleukin and celecoxib were used as adjuvants to the vaccines. The objective of the study was to evaluate specific T cell response in vitro by IFNg EliSpot. Secondary objectives were overall survival, response and quality of life (QoL). Results: Twenty-two patients initiated the vaccination program consisting of ten vaccinations. Seven patients remained in stable disease (SD) three months after the first vaccination. After ten vaccinations (six months), four patients still showed SD and continued vaccinations on a monthly basis. These four patients received a total of 12, 16, 26 and 35 vaccinations, respectively. Five patients showed an unexpectedly prolonged survival. The treatment was well tolerated and only minor adverse events were reported. Quality of life did not change during the study period. In four of the seven patients with SD, vaccine-specific T cells were detected by IFNγ EliSpot assays, whereas only one patient with progressive disease (PD) showed vaccine-specific responses. Conclusion: This DC-based vaccine trial has indicated a correlation between vaccine-specific immunity and sustained SD. Furthermore, we observed an unexpectedly prolonged survival in some patients, which may indicate delayed effect of DC vaccination after completion of the treatment. A prospective randomized phase-IIb or -III is needed to further evaluate the use of MelCancerVac? vaccine treatment in patients with progressive NSCLC.
基金funded by the National Key Research and Development Program of China(2016YFD0501101)the project of Food Science Discipline Construction of Shanghai University and the National Natural Science Foundation of China(31201306)。
文摘Little information was so far available about allergenic mechanism of the roasted peanut allergens during initial stages of allergy.The purpose of this study was to determine the influence of roasting(150℃,20 min)on biochemical and biological properties of Ara h 3,a major peanut allergen.Allergenicity of roasted peanut emulsion to mice,differences in uptakes between Ara h 3 purified from raw peanuts(named as Ara h 3-Raw)and that purified from roasted peanuts(named as Ara h 3-Roasted)by bone marrow-derived dendritic cells(BMDCs)and the implication of cell surface receptors involving in uptake,and changes in glycosylation and structure of Ara h 3 after roasting were analyzed in this study.This study suggested that roasting increased allergenicity of peanut to BALB/c mice.Maillard reaction and structural changes of Ara h 3 induced by roasting significantly altered the uptake of Ara h 3-Roasted by BMDCs,and modified Ara h 3 fate in processes involved in immunogenicity and hyper allergenicity,indicating that food processing pattern can change food allergenicity.
基金Supported by Natural Science Foundation of Beijing "Effect of porcine skin-derived dendritic cells on PCV infection" (6062006)Beijing Organization Department Project"Influence of PCV infection on bone marrow cell differentiation" (20061D0502100282)~~
文摘[Objective] This study aimed to investigate the changes of the transcriptional levels of molecules associated with endogenous antigen processing and presenta- tion in porcine skin-derived dendritic cells infected with PCV2 in vivo. [Method] Healthy 40-day-old Landrace piglets were infected with porcine circovirus type 2 (PCV2) and euthanized on the 34, 7rd, 14th, 21st and 35th d post inoculation (DPI). The porcine skin-derived dendritic cells (DCs) were collected to analyze the transcrip- tional levels of molecules (LMP7, UBP, MHC-I, calreticulin) associated with endogenous antigen processing and presentation by using real-time fluorescent quantitative PCR (real-time FQ-PCR). [Result] The results showed that the level of LMP7 mR- NAs was reduced significantly on the 3DPI (P〈0.05); the level of UBP mRNAs was consistently up-regulated, which increased significantly on the 21DPI and 35DPI (P〈 0.05); the level of MHC-I mRNAs was significantly down-regulated on the 7DPI (P〈 0.05); the level of calreticulin mRNAs was up-regulated slightly without significant dif- ference. [Conclusion] PCV2 can inhibit the endogenous antigen processing and presentation ability of porcine skin-derived DCs at early stages of infection.
基金supported by the National Natural Science Foundation of China,China (No.81970016,81870039).
文摘The immune responses play a profound role in the progression of lung lesions in both infectious and non-infectious diseases.Dendritic cells,as the"frontline"immune cells responsible for antigen presentation,set up a bridge between innate and adaptive immunity in the course of these diseases.Among the receptors equipped in dendritic cells,Toll-like re-ceptors are a group of specialized receptors as one type of pattern recognition receptors,capable of sensing environmental signals including invading pathogens and self-antigens.Toll-like receptor 4,a pivotal member of the Toll-like receptor family,was formerly recognized as a receptor sensitive to the outer membrane component lipopolysaccharide derived from Gram-negative bacteria,triggering the subsequent response.Moreover,its other essential roles in immune responses have drawn significant attention in the past decade.A better under-standing of the implication of Toll-like receptor 4 in dendritic cells could contribute to the management of pulmonary diseases including pneumonia,pulmonary tuberculosis,asthma,acutelung injury,and lung cancer.
文摘Nanoparticles represent a heterogeneous collection of materials,whether natural or synthetic,with dimensions aligning in the nanoscale.Because of their intense manifestation with the immune system,they can be harvested for numerous bio-medical and biotechnological advancements mainly in cancer treatment.This review article aims to scrutinize various types of nanoparticles that interact differently with immune cells like macrophages,dendritic cells,T lymphocytes,and natural killer(NK)cells.It also underscores the importance of knowing how nanoparticles influence immune cell functions,such as the production of cytokines and the presentation of antigens which are crucial for effective cancer immunotherapy.Hence overviews of bio-molecular mechanisms are provided.Nanoparticles can improve antigen presentation,boost T-cell responses,and overcome the immunosuppressive tumor environment.The regulatory mechanisms,signaling pathways,and nanoparticle characteristics are also presented for a comprehensive understanding.We review the nanotechnology platform options and challenges in nanoparticlesbased immunotherapy,from an immunotherapy perspective including precise targeting,immune modulation,and potential toxicity,as well as personalized approaches based on individual patient and tumor characteristics.The development of emerging multifunctional nanoparticles and theranostic nanoparticles will provide new solutions for the precision and efficiency of cancer therapies in next-generation practice.
基金Supported by Fundamental and Advanced Research Projects of Henan Province(152300410076,2015-2017)Key Science and Technology Program of Henan Province(152102110048,2015-2017)~~
文摘[Objective] This study aimed to establish an in vitro culture model for porcine peripheral blood monocyte-derived dendritic cells (MoDCs). [Method] Fresh peripheral blood mononuclear cells (PBMCs) were separated from pig, and precursor dendritic cells were obtained by adherence method. The dendritic cells were treated by recombinant porcine granulocyte-monocyte colony stimulating factor (rpGM-CSF) and recombinant porcine interleukin-4 (rplL-4) together, and lipopolysaccharide (LPS) respectively. The cells in different time periods were collected. The morphology of the collected cells was observed by scanning electron microscopy; the expression of surface molecules and phagocytic ability to FITC-dextran were detected by flow cy- tometry; and the stimulating ability for allogeneic T cells was detected by mixed lymphocyte reaction. [Result] The DCs suffering maturation induction in vitro showed typical dendritic morphology; compared with those of DCs untreated by LPS, the cell surface expression of CDla, CD80, CD86, SLAII and CD172a of DCs treated by LPS was significantly increased, the phagocytic ability was reduced slightly, and the stimulating ability for allogeneic T cells was enhanced to some extent. [Conclusion] An in vitro culture method was successfully established for porcine MoDCs in this study, laying a foundation for further study on the role of porcine MoDCs in immunoregulation and anti-virus infection.
基金supported by grants from the China Postdoctoral Science Foundation(Grant No.2022M712880)the Program of the Major Research Plan of the National Natural Science Foundation of China(Grant No.91942314)the National Natural Science Foundation of China(Grant No.82001659).
文摘Plasmacytoid dendritic cells(pDCs)are a pioneer cell type that produces type I interferon(IFN-I)and promotes antiviral immune responses.However,they are tolerogenic and,when recruited to the tumor microenvironment(TME),play complex roles that have long been a research focus.The interactions between p DCs and other components of the TME,whether direct or indirect,can either promote or hinder tumor development;consequently,p DCs are an intriguing target for therapeutic intervention.This review provides a comprehensive overview of p DC crosstalk in the TME,including crosstalk with various cell types,biochemical factors,and microorganisms.An in-depth understanding of p DC crosstalk in TME should facilitate the development of novel p DC-based therapeutic methods.
基金National Natural Science Foundation of China with the Grant Number 61877045。
文摘The dendritic cell algorithm(DCA)is an excellent prototype for developing Machine Learning inspired by the function of the powerful natural immune system.Too many parameters increase complexity and lead to plenty of criticism in the signal fusion procedure of DCA.The loss function of DCA is ambiguous due to its complexity.To reduce the uncertainty,several researchers simplified the algorithm program;some introduced gradient descent to optimize parameters;some utilized searching methods to find the optimal parameter combination.However,these studies are either time-consuming or need to be revised in the case of non-convex functions.To overcome the problems,this study models the parameter optimization into a black-box optimization problem without knowing the information about its loss function.This study hybridizes bayesian optimization hyperband(BOHB)with DCA to propose a novel DCA version,BHDCA,for accomplishing parameter optimization in the signal fusion process.The BHDCA utilizes the bayesian optimization(BO)of BOHB to find promising parameter configurations and applies the hyperband of BOHB to allocate the suitable budget for each potential configuration.The experimental results show that the proposed algorithm has significant advantages over the otherDCAexpansion algorithms in terms of signal fusion.