By a simple phase field model, a series of numerical simulations of solidification microstructure was performed to show a rich variety of dendritic patterns. At the same time, the relation between the morphology of gr...By a simple phase field model, a series of numerical simulations of solidification microstructure was performed to show a rich variety of dendritic patterns. At the same time, the relation between the morphology of grain growth and some parameters including the strength of anisotropy, dimensionless latent heat and the size of initial solid zone was studied. It is for the first time that patterns of grain growth were associated with the size of initial solid zone, which is an interesting issue. The possible reason for this may be that variation in the size of initial solid zone may bring about fluctuation of the interface energy, making the interface unstable.展开更多
A well-developed drainage network was carved in the study area in a hard calcretized and gypcretized gravelly sand of the Dibdibba Formation (Al-Rukham slope) in pluvial episodes in the post-pleistocene age, and is re...A well-developed drainage network was carved in the study area in a hard calcretized and gypcretized gravelly sand of the Dibdibba Formation (Al-Rukham slope) in pluvial episodes in the post-pleistocene age, and is referred to be paleo-drainage due to the current witnessed aridity. This study aims to investigate the geomorphologic, morphometric, and stratigraphic characteristics of the paleo-drainage system and its role in recharging shallow aquifers. Morphometric analysis was accomplished using GIS and remote sensing techniques. Six vertical pit holes were dug across the area to investigate the stratigraphy and recharging capacity. The drainage system is composed of 10 closely spaced, subparallel, dendritic, elongated, and variant-sloped drainage basins with highest stream order of 5. Water flows NE from Al-Rukham ridge’s crest (60 m a.m.s.l.) downstream in Khor Al-Subiyah coastal flat. The bed rock’s hard resistant nature lowered its infiltration and recharging capacity to the shallow aquifer, whereas the coarse-grained wadi fills deposits increased infiltration capacity of the surface sediments, but the water percolation chance is limited as it eventually directed seaward by the same-directed general topography resulting in limiting potential recharge to the shallow aquifers. This is suggested to oppose the salt water intrusion and thus enhance fresh water quality.展开更多
基金This work was supported by the National Natural Science Foundation of China(GranL No.10176009)
文摘By a simple phase field model, a series of numerical simulations of solidification microstructure was performed to show a rich variety of dendritic patterns. At the same time, the relation between the morphology of grain growth and some parameters including the strength of anisotropy, dimensionless latent heat and the size of initial solid zone was studied. It is for the first time that patterns of grain growth were associated with the size of initial solid zone, which is an interesting issue. The possible reason for this may be that variation in the size of initial solid zone may bring about fluctuation of the interface energy, making the interface unstable.
文摘A well-developed drainage network was carved in the study area in a hard calcretized and gypcretized gravelly sand of the Dibdibba Formation (Al-Rukham slope) in pluvial episodes in the post-pleistocene age, and is referred to be paleo-drainage due to the current witnessed aridity. This study aims to investigate the geomorphologic, morphometric, and stratigraphic characteristics of the paleo-drainage system and its role in recharging shallow aquifers. Morphometric analysis was accomplished using GIS and remote sensing techniques. Six vertical pit holes were dug across the area to investigate the stratigraphy and recharging capacity. The drainage system is composed of 10 closely spaced, subparallel, dendritic, elongated, and variant-sloped drainage basins with highest stream order of 5. Water flows NE from Al-Rukham ridge’s crest (60 m a.m.s.l.) downstream in Khor Al-Subiyah coastal flat. The bed rock’s hard resistant nature lowered its infiltration and recharging capacity to the shallow aquifer, whereas the coarse-grained wadi fills deposits increased infiltration capacity of the surface sediments, but the water percolation chance is limited as it eventually directed seaward by the same-directed general topography resulting in limiting potential recharge to the shallow aquifers. This is suggested to oppose the salt water intrusion and thus enhance fresh water quality.