期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Beta 2-adrenergic receptor activation enhances neurogenesis in Alzheimer's disease mice 被引量:2
1
作者 Gao-shang Chai Yang-yang Wang +1 位作者 Amina Yasheng Peng Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第10期1617-1624,共8页
Impaired hippocampal neurogenesis is one of the early pathological features of Alzheimer's disease. Enhancing adult hippocampal neuro- genesis has been pursued as a potential therapeutic strategy for Alzheimer's dis... Impaired hippocampal neurogenesis is one of the early pathological features of Alzheimer's disease. Enhancing adult hippocampal neuro- genesis has been pursued as a potential therapeutic strategy for Alzheimer's disease. Recent studies have demonstrated that environmental novelty activates β2-adrenergic signaling and prevents the memory impairment induced by amyloid-β oligomers. Here, we hypothesized that β2-adrenoceptor activation would enhance neurogenesis and ameliorate memory deficits in Alzheimer's disease. To test this hypothe- sis, we investigated the effects and mechanisms of action of β2-adrenoceptor activation on neurogenesis and memory in amyloid precursor protein/presenilin 1 (APP/PS1) mice using the agonist clenbuterol (intraperitoneal injection, 2 mg/kg). We found that β2-adrenoceptor ac- tivation enhanced hippocampal neurogenesis, ameliorated memory deficits, and increased dendritic branching and the density of dendritic spines, lhese effects were associated with the upregulation of postsynaptic density 95, synapsin 1 and synaptophysin in APP/PS1 mice. Furthermore, β2-adrenoceptor activation decreased cerebral amyloid plaques by decreasing APP phosphorylation at Thr668. These findings suggest that β2-adrenoceptor activation enhances neurogenesis and ameliorates memory deficits in APP/PS 1 mice. 展开更多
关键词 nerve regeneration Alzheimer's disease β2-adrenoceptors amyloid β NEUROGENESIS CLENBUTEROL APP/PS1 mice memory dendriticspine synapsin I SYNAPTOPHYSIN postsynaptic density 95 neural regeneration
下载PDF
Amyotrophic lateral sclerosis as a synaptopathy 被引量:1
2
作者 Matthew J.Fogarty 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第2期189-192,共4页
The synapse is an incredibly specialized structure that allows for the coordinated communication of information from one neuron to another. When assembled into circuits, steady streams of excitatory and inhibitory syn... The synapse is an incredibly specialized structure that allows for the coordinated communication of information from one neuron to another. When assembled into circuits, steady streams of excitatory and inhibitory synaptic activity shape neural outputs. At the organismal level, ensembles of neural networks underlie behavior, emotion and memory. Disorder or dysfunctions of synapses, a synaptopathy, may underlie a host of developmental and degenerative neurological conditions. There is a possibility that amyotrophic lateral sclerosis may be a result of a synaptopathy within the neuromotor system. To this end, particular attention has been trained on the excitatory glutamatergic synapses and their morphological proxy, the dendritic spine. The extensive detailing of these dysfunctions in vulnerable neuronal populations, including corticospinal neurons and motor neurons, has recently been the subject of original research in rodents and humans. If amyotrophic lateral sclerosis is indeed a synaptopathy, it is entirely consistent with other proposed pathogenic mechanisms – including glutamate excitotoxicity, accumulation of misfolded proteins and mitochondrial dysfunction at distal axon terminals(cortico-motor neuron and neuromuscular). Further, although the exact mechanism of disease spread from region to region is unknown, the synaptopathy hypothesis is consistent with emerging die-forward evidence and the prion-like propagation of misfolded protein aggregates to distant neuronal populations. Here in this mini-review, we focus on the timeline of synaptic observations in both cortical and spinal neurons from different rodent models, and provide a conceptual framework for assessing the synaptopathy hypothesis in amyotrophic lateral sclerosis. 展开更多
关键词 MOTOR neuron MOTOR cortex CORTICOSPINAL EXCITOTOXICITY SYNAPTIC transmission DENDRITES dendriticspines NEUROMUSCULAR junction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部