期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Spatial Distribution and Environmental Determinants of Denitrification Enzyme Activity in Reed-Dominated Raised Fields 被引量:2
1
作者 LAN Yan CUI Baoshan +3 位作者 HAN Zhen LI Xia LI Fengju ZHANG Yongtao 《Chinese Geographical Science》 SCIE CSCD 2015年第4期438-450,共13页
Denitrification is an important process of nitrogen removal in lake ecosystems.However,the importance of denitrification across the entire soil-depth gradients including subsurface layers remains poorly understood.Thi... Denitrification is an important process of nitrogen removal in lake ecosystems.However,the importance of denitrification across the entire soil-depth gradients including subsurface layers remains poorly understood.This study aims to determine the spatial pattern of soil denitrification enzyme activity(DEA) and its environmental determinants across the entire soil depth gradients in the raised fields in Baiyang Lake,North China.In two different zones of the raised fields(i.e.,water boundary vs.main body of the raised fields),the soil samples from 1.0 m to 1.1 m depth were collected,and the DEA and following environmental determinants were quantified:soil moisture,p H,total nitrogen(TN),ammonia nitrogen(NH4+-N),nitrate nitrogen(NO3–-N),total organic carbon(TOC),and rhizome biomass of Phragmites australis.The results showed that the soil DEA and environmental factors had a striking zonal distribution across the entire soil depth gradients.The soil DEA reached two peak values in the upper and middle soil layers,indicating that denitrification are important in both topsoil and subsurface of the raised fields.The correlation analysis showed that the DEA is negatively correlated with the soil depth(p < 0.05).However,this phenomenon did not occur in the distance to the water edge,except in the upper layers(from 0.2 m to 0.7 m) of the boundary zone of the raised fields.In the main body of the raised fields,the DEA level remained high;however,it showed no significant relationship with the distance to the water edge.The linear regression analysis showed significant positive correlation of the DEA with the soil TN,NO3–-N,NH4+-N,and TOC;whereas it showed negative correlation with soil p H.No significant correlations with soil moisture and temperature were observed.A positive correlation was also found between the DEA and rhizome biomass of P.australis. 展开更多
关键词 denitrification enzyme activity(DEA) nitrate removal raised fields Baiyang Lake rhizomes
下载PDF
Simultaneous heterotrophic nitrification and aerobic denitrification at high initial phenol concentration by isolated bacterium Diaphorobacter sp. PD-7 被引量:30
2
作者 Qilong Ge Xiuping Yue Guoying Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第5期835-841,共7页
A strain capable of phenol degradation, hetemtrophic nitrification and aerobic denitrification was isolated from activated sludge of coking-plant wastewater ponds under aerobic condition. Based on its morphology, phys... A strain capable of phenol degradation, hetemtrophic nitrification and aerobic denitrification was isolated from activated sludge of coking-plant wastewater ponds under aerobic condition. Based on its morphology, physiology, biochemical analysis and phylogenetic characteristics, the isolate was identified as Diaphorobacter sp. PD-7. Biodegradation tests of phenol showed that the maximum phenol degradation occurred at the late phase of exponential growth stages, with 1400 mg·L^-1 phenol completely degraded within 85 h. Diaphorobacter sp. PD-7 accumulated a vast quantity of phenol hydroxylase in this physiological phase, ensuring that the cells quickly utilize phenol as a sole carbon and energy source. The kinetic behavior ofDiaphorobacter sp. PD-7 in batch cultures was investigated over a wide range of initial phenol concentrations (0-1400mg·L^-1) by using the Haldane model, which adequately describes the dynamic behavior of phenol biodegradation by strain Diaphombacter sp. PD-7. At initial phenol concentration of 1400mg· L^-l, batch experiments (0.25 L flask) of nitrogen removal under aerobic condition gave almost entirely removal of 120.69mg· L^- 1 ammonium nitrogen within 75 h, while nitrate nitrogen removal reached 91% within 65 h. Moreover, hydroxylamine oxidase, periplasmic nitrate reductase and nitrite reductase were successfully expressed in the isolate. 展开更多
关键词 Diaphorobacter sp.Phenol biodegradation Kinetics Heterotrophic nitrification Aerobic denitrification enzyme activity
下载PDF
Responses of activities, abundances and community structures of soil denitrifiers to short-term mercury stress 被引量:8
3
作者 Zhifeng Zhou Yuanming Zheng +3 位作者 Jupei Shen Limei Zhang Yurong Liu Jizheng He 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第3期369-375,共7页
The responses of activities, abundances and community structures of soil denitrifiers to mercury (Hg) stress were investigated through a short-term incubation experiment. Four soil treatments with different concentr... The responses of activities, abundances and community structures of soil denitrifiers to mercury (Hg) stress were investigated through a short-term incubation experiment. Four soil treatments with different concentrations of Hg (CK, Hg25, Hg50, and Hg100, denoted as 0, 25, 50, and 100 mg Hg/kg dry soil, respectively) were incubated for 28 days. Soil denitrification enzyme activity (DEA) was measured at day 3, 7 and 28. The abundances and community structures of two denitrification concerning genes, nirS (cd1-nitrite reductase gene) and nosZ (nitrous oxide reductase gene), were analyzed using real-time PCR and denaturing gradient gel electrophoresis (DGGE). Results showed that soil DEA was significantly stimulated in the treatments of Hg25 and Hg50 compared with others at day 7. Meanwhile, no difference in the abundances of soil nirS and nosZ was found between Hg spiked treatments and CK, except the lower abundance of nirS (P 〈 0.05) in the Hg added treatments compared with that in the CK at day 28. The community structures of denitrifiers based on nirS gene presented obvious change at day 7 along with the Hg additions, however, no variation was found in all treatments based on the nosZ gene. The results indicated that Hg (Hg25 and Hg50) had a strongly short-term stimulation on soil DEA, and nirS gene is more sensitive than nosZ gene to Hg stress. 展开更多
关键词 Hg denitrification enzyme activity nirS NOSZ DGGE real-time PCR
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部