In the current biomedical data movement, numerous efforts have been made to convert and normalize a large number of traditional structured and unstructured data (e.g., EHRs, reports) to semi-structured data (e.g., RDF...In the current biomedical data movement, numerous efforts have been made to convert and normalize a large number of traditional structured and unstructured data (e.g., EHRs, reports) to semi-structured data (e.g., RDF, OWL). With the increasing number of semi-structured data coming into the biomedical community, data integration and knowledge discovery from heterogeneous domains become important research problem. In the application level, detection of related concepts among medical ontologies is an important goal of life science research. It is more crucial to figure out how different concepts are related within a single ontology or across multiple ontologies by analysing predicates in different knowledge bases. However, the world today is one of information explosion, and it is extremely difficult for biomedical researchers to find existing or potential predicates to perform linking among cross domain concepts without any support from schema pattern analysis. Therefore, there is a need for a mechanism to do predicate oriented pattern analysis to partition heterogeneous ontologies into closer small topics and do query generation to discover cross domain knowledge from each topic. In this paper, we present such a model that predicates oriented pattern analysis based on their close relationship and generates a similarity matrix. Based on this similarity matrix, we apply an innovated unsupervised learning algorithm to partition large data sets into smaller and closer topics and generate meaningful queries to fully discover knowledge over a set of interlinked data sources. We have implemented a prototype system named BmQGen and evaluate the proposed model with colorectal surgical cohort from the Mayo Clinic.展开更多
This paper analyzes errors in college students' oral English in class. There are three types of errors: interferences errors, intralingual errors and developmental errors. All the three kinds of errors can be foun...This paper analyzes errors in college students' oral English in class. There are three types of errors: interferences errors, intralingual errors and developmental errors. All the three kinds of errors can be found when students speak English. Then the paper introduces strategies for error correction from three aspects: before students' speech, during their speech and after their speech.展开更多
Considering the problems that should be solved in the synthetic earthquake prediction at present, a new model is proposed in the paper. It is called joint multivariate statistical model combined by principal component...Considering the problems that should be solved in the synthetic earthquake prediction at present, a new model is proposed in the paper. It is called joint multivariate statistical model combined by principal component analysis with discriminatory analysis. Principal component analysis and discriminatory analysis are very important theories in multivariate statistical analysis that has developed quickly in the late thirty years. By means of maximization information method, we choose several earthquake prediction factors whose cumulative proportions of total sam-ple variances are beyond 90% from numerous earthquake prediction factors. The paper applies regression analysis and Mahalanobis discrimination to extrapolating synthetic prediction. Furthermore, we use this model to charac-terize and predict earthquakes in North China (30~42N, 108~125E) and better prediction results are obtained.展开更多
Recent years have witnessed a rapid spread of multi-modality microblogs like Twitter and Sina Weibo composed of image, text and emoticon. Visual sentiment prediction of such microblog based social media has recently a...Recent years have witnessed a rapid spread of multi-modality microblogs like Twitter and Sina Weibo composed of image, text and emoticon. Visual sentiment prediction of such microblog based social media has recently attracted ever-increasing research focus with broad application prospect. In this paper, we give a systematic review of the recent advances and cutting-edge techniques for visual senti- ment analysis. To this end, in this paper we review the most recent works in this topic, in which detailed comparison as well as experimental evaluation are given over the cuttingedge methods. We further reveal and discuss the future trends and potential directions for visual sentiment prediction.展开更多
文摘In the current biomedical data movement, numerous efforts have been made to convert and normalize a large number of traditional structured and unstructured data (e.g., EHRs, reports) to semi-structured data (e.g., RDF, OWL). With the increasing number of semi-structured data coming into the biomedical community, data integration and knowledge discovery from heterogeneous domains become important research problem. In the application level, detection of related concepts among medical ontologies is an important goal of life science research. It is more crucial to figure out how different concepts are related within a single ontology or across multiple ontologies by analysing predicates in different knowledge bases. However, the world today is one of information explosion, and it is extremely difficult for biomedical researchers to find existing or potential predicates to perform linking among cross domain concepts without any support from schema pattern analysis. Therefore, there is a need for a mechanism to do predicate oriented pattern analysis to partition heterogeneous ontologies into closer small topics and do query generation to discover cross domain knowledge from each topic. In this paper, we present such a model that predicates oriented pattern analysis based on their close relationship and generates a similarity matrix. Based on this similarity matrix, we apply an innovated unsupervised learning algorithm to partition large data sets into smaller and closer topics and generate meaningful queries to fully discover knowledge over a set of interlinked data sources. We have implemented a prototype system named BmQGen and evaluate the proposed model with colorectal surgical cohort from the Mayo Clinic.
文摘This paper analyzes errors in college students' oral English in class. There are three types of errors: interferences errors, intralingual errors and developmental errors. All the three kinds of errors can be found when students speak English. Then the paper introduces strategies for error correction from three aspects: before students' speech, during their speech and after their speech.
文摘Considering the problems that should be solved in the synthetic earthquake prediction at present, a new model is proposed in the paper. It is called joint multivariate statistical model combined by principal component analysis with discriminatory analysis. Principal component analysis and discriminatory analysis are very important theories in multivariate statistical analysis that has developed quickly in the late thirty years. By means of maximization information method, we choose several earthquake prediction factors whose cumulative proportions of total sam-ple variances are beyond 90% from numerous earthquake prediction factors. The paper applies regression analysis and Mahalanobis discrimination to extrapolating synthetic prediction. Furthermore, we use this model to charac-terize and predict earthquakes in North China (30~42N, 108~125E) and better prediction results are obtained.
文摘Recent years have witnessed a rapid spread of multi-modality microblogs like Twitter and Sina Weibo composed of image, text and emoticon. Visual sentiment prediction of such microblog based social media has recently attracted ever-increasing research focus with broad application prospect. In this paper, we give a systematic review of the recent advances and cutting-edge techniques for visual senti- ment analysis. To this end, in this paper we review the most recent works in this topic, in which detailed comparison as well as experimental evaluation are given over the cuttingedge methods. We further reveal and discuss the future trends and potential directions for visual sentiment prediction.