期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于图像特征融合的恶意代码检测 被引量:6
1
作者 谭茹涵 左黎明 +1 位作者 刘二根 郭力 《信息网络安全》 CSCD 北大核心 2021年第10期90-95,共6页
随着恶意代码混淆技术的不断升级,传统检测方法已不能满足安全需求。文章提出了一种基于图像特征融合的恶意代码检测方法,采用加权的HOG特征对B2M算法转换后的恶意代码进行局部纹理特征提取,根据恶意代码不同段落位置对分类的影响力度不... 随着恶意代码混淆技术的不断升级,传统检测方法已不能满足安全需求。文章提出了一种基于图像特征融合的恶意代码检测方法,采用加权的HOG特征对B2M算法转换后的恶意代码进行局部纹理特征提取,根据恶意代码不同段落位置对分类的影响力度不同,分别赋予不同的权重。同时,采用Dense SIFT提取全局纹理结构特征,将局部纹理特征和全局纹理结构特征两者进行融合,既可以反映恶意代码的细节特征,又不忽视整体的结构特性。利用SVM对提取后的特征进行分类检验,实验结果表明,融合特征的性能优于单一特征。 展开更多
关键词 加权HOG dense sift特征 特征融合 SVM
下载PDF
基于RGB-D融合特征的图像分类 被引量:7
2
作者 向程谕 王冬丽 +1 位作者 周彦 李雅芳 《计算机工程与应用》 CSCD 北大核心 2018年第8期178-182,254,共6页
当前经典的图像分类算法大多是基于RGB图像或灰度图像,并没有很好地利用物体或场景的深度信息,针对这个问题,提出了一种基于RGB-D融合特征的图像分类方法。首先,分别提取RGB图像dense SIFT局部特征与深度图Gist全局特征,然后将得到的两... 当前经典的图像分类算法大多是基于RGB图像或灰度图像,并没有很好地利用物体或场景的深度信息,针对这个问题,提出了一种基于RGB-D融合特征的图像分类方法。首先,分别提取RGB图像dense SIFT局部特征与深度图Gist全局特征,然后将得到的两种图像特征进行特征融合;其次,使用改进K-means算法对融合特征建立视觉词典,克服了传统K-means算法过度依赖初始点选择的问题,并在图像表示阶段引入LLC稀疏编码对融合特征与其对应的视觉词典进行稀疏编码;最后,利用线性SVM进行图像分类。实验结果表明,所提出的算法能有效地提高图像分类的精度。 展开更多
关键词 深度图像 dense尺度不变特征变化(sift)特征 Gist特征 K-MEANS算法 局部约束线性编码(LLC)稀疏编码
下载PDF
Detection of engineering vehicles in high-resolution monitoring images 被引量:1
3
作者 Xun LIU Yin ZHANG +3 位作者 San-yuan ZHANG Ying WANG Zhong-yan LIANG Xiu-zi YE 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第5期346-357,共12页
This paper presents a novel formulation for detecting objects with articulated rigid bodies from highresolution monitoring images, particularly engineering vehicles. There are many pixels in high-resolution monitoring... This paper presents a novel formulation for detecting objects with articulated rigid bodies from highresolution monitoring images, particularly engineering vehicles. There are many pixels in high-resolution monitoring images, and most of them represent the background. Our method first detects ob ject patches from monitoring images using a coarse detection process. In this phase, we build a descriptor based on histograms of oriented gradient, which contain color frequency information. Then we use a linear support vector machine to rapidly detect many image patches that may contain ob ject parts, with a low false negative rate and a high false positive rate. In the second phase, we apply a refinement classification to determine the patches that actually contain ob jects. In this stage, we increase the size of the image patches so that they include the complete ob ject using models of the ob ject parts.Then an accelerated and improved salient mask is used to improve the performance of the dense scale-invariant feature transform descriptor. The detection process returns the absolute position of positive ob jects in the original images. We have applied our methods to three datasets to demonstrate their effectiveness. 展开更多
关键词 Object detection Histogram of oriented gradient (HOG) dense scale-invariant feature transform(dense sift SALIENCY Part models Engineering vehicles
原文传递
A Generic Object Detection Using a Single Query Image Without Training 被引量:2
4
作者 Bin Xiong Xiaoqing Ding 《Tsinghua Science and Technology》 EI CAS 2012年第2期194-201,共8页
A method was developed to detect generic objects using a single query image. The query image could be a typical real image, a virtual image, or even a hand-drawn sketch of the object. Without a training process, the k... A method was developed to detect generic objects using a single query image. The query image could be a typical real image, a virtual image, or even a hand-drawn sketch of the object. Without a training process, the key problem is how to describe the object class from only one query image with no pre-segmentation or other pre-processing procedures. The method introduces densely computed Scale-lnvariant Feature Transform (SIFT) as the descriptor to extract "gradient distribution" features of the image. The descriptor emphasizes the edge parts and their distribution structures, which are very representative of the object class, so it is very robust and can deal with virtual images or hand-drawn sketches. Tests on car detection, face detection, and generic object detection demonstrate that the method is effective, robust, and widely applicable. The results using queries of real images compare well with other training-free methods and state-of-the-art training-based methods. 展开更多
关键词 object detection densely computed sift training free single query image
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部