We propose a novel and efficient multi-functional optical fiber sensor system based on a dense wavelength division multiplexer(DWDM).This system consists of an optical fiber temperature sensor, an optical fiber strain...We propose a novel and efficient multi-functional optical fiber sensor system based on a dense wavelength division multiplexer(DWDM).This system consists of an optical fiber temperature sensor, an optical fiber strain sensor, and a 48-channel DWDM.This system can monitor temperature and strain changes at the same time.The ranges of these two sensors are from-20℃ to 100℃ and from-1000 με to 2000 με, respectively.The sensitivities of the temperature sensor and strain sensor are 0.03572 nm/℃ and 0.03808 nm/N, respectively.With the aid of a broadband source and spectrometer,different kinds and ranges of parameters in the environment can be monitored by using suitable sensors.展开更多
A high-performance silicon arrayed-waveguide grating(AWG)with 0.4-nm channel spacing for dense wavelength-division multiplexing systems is designed and realized successfully.The device design involves broadening the a...A high-performance silicon arrayed-waveguide grating(AWG)with 0.4-nm channel spacing for dense wavelength-division multiplexing systems is designed and realized successfully.The device design involves broadening the arrayed waveguides far beyond the single-mode regime,which minimizes random phase errors and propagation loss without requiring any additional fabrication steps.To further enhance performance,Euler bends have been incorporated into the arrayed waveguides to reduce the device’s physical footprint and suppress the excitation of higher modes.In addition,shallowly etched transition regions are introduced at the junctions between the free-propagation regions and the arrayed waveguides to minimize mode mismatch losses.As an example,a 32×32 AWG(de)multiplexer with a compact size of 900μm×2200μm is designed and demonstrated with a narrow channel spacing of 0.4 nm by utilizing 220-nm-thick silicon photonic waveguides.The measured excess loss for the central channel is∼0.65 dB,the channel nonuniformity is around 2.5 dB,while the adjacent-channel crosstalk of the central output port is−21.4 dB.To the best of our knowledge,this AWG(de)multiplexer is the best one among silicon-based implementations currently available,offering both dense channel spacing and a large number of channels.展开更多
为了提高密集波分复用(DWDM)薄膜窄带滤光片制备的成品率,讨论了用于DWDM薄膜窄带滤光片在镀制过程中的监控方法及误差,采用Monte Carlo允差分析原理分析用于DWDM窄带滤光片膜层的容差,以便选择更易制备的膜系;计算膜层的M ac leod极值...为了提高密集波分复用(DWDM)薄膜窄带滤光片制备的成品率,讨论了用于DWDM薄膜窄带滤光片在镀制过程中的监控方法及误差,采用Monte Carlo允差分析原理分析用于DWDM窄带滤光片膜层的容差,以便选择更易制备的膜系;计算膜层的M ac leod极值灵敏度,得到所选膜系各个膜层的误差要求;模拟光学监控过程和计算膜层导纳,能够得到膜层制备过程中膜层之间膜厚的补偿关系。实验表明,据此制定的膜厚监控策略,对于DWDM窄带滤光片膜层的制备和保证成品率是非常关键的。展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0402504)the National Natural Science Foundation of China(Grant Nos.61875069 and 61575076)+1 种基金Hong Kong Scholars Program,China(Grant No.XJ2016026)the Science and Technology Development Plan of Jilin Province,China(Grant Nos.20190302010GX and 20160520091JH)
文摘We propose a novel and efficient multi-functional optical fiber sensor system based on a dense wavelength division multiplexer(DWDM).This system consists of an optical fiber temperature sensor, an optical fiber strain sensor, and a 48-channel DWDM.This system can monitor temperature and strain changes at the same time.The ranges of these two sensors are from-20℃ to 100℃ and from-1000 με to 2000 με, respectively.The sensitivities of the temperature sensor and strain sensor are 0.03572 nm/℃ and 0.03808 nm/N, respectively.With the aid of a broadband source and spectrometer,different kinds and ranges of parameters in the environment can be monitored by using suitable sensors.
基金supported by the National Natural Science Foundation of China(Grant Nos.U23B2047,62321166651,62205292,and 92150302)the Zhejiang Major Research and Development Program(Grant No.2021C01199)+1 种基金the Zhejiang Provincial Natural Science Foundation(Grant Nos.LZ18F050001,LD19F050001,LQ21F050006,and LD22F040004)the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(Grant No.2021R01001)。
文摘A high-performance silicon arrayed-waveguide grating(AWG)with 0.4-nm channel spacing for dense wavelength-division multiplexing systems is designed and realized successfully.The device design involves broadening the arrayed waveguides far beyond the single-mode regime,which minimizes random phase errors and propagation loss without requiring any additional fabrication steps.To further enhance performance,Euler bends have been incorporated into the arrayed waveguides to reduce the device’s physical footprint and suppress the excitation of higher modes.In addition,shallowly etched transition regions are introduced at the junctions between the free-propagation regions and the arrayed waveguides to minimize mode mismatch losses.As an example,a 32×32 AWG(de)multiplexer with a compact size of 900μm×2200μm is designed and demonstrated with a narrow channel spacing of 0.4 nm by utilizing 220-nm-thick silicon photonic waveguides.The measured excess loss for the central channel is∼0.65 dB,the channel nonuniformity is around 2.5 dB,while the adjacent-channel crosstalk of the central output port is−21.4 dB.To the best of our knowledge,this AWG(de)multiplexer is the best one among silicon-based implementations currently available,offering both dense channel spacing and a large number of channels.
文摘为了提高密集波分复用(DWDM)薄膜窄带滤光片制备的成品率,讨论了用于DWDM薄膜窄带滤光片在镀制过程中的监控方法及误差,采用Monte Carlo允差分析原理分析用于DWDM窄带滤光片膜层的容差,以便选择更易制备的膜系;计算膜层的M ac leod极值灵敏度,得到所选膜系各个膜层的误差要求;模拟光学监控过程和计算膜层导纳,能够得到膜层制备过程中膜层之间膜厚的补偿关系。实验表明,据此制定的膜厚监控策略,对于DWDM窄带滤光片膜层的制备和保证成品率是非常关键的。