期刊文献+
共找到2,659篇文章
< 1 2 133 >
每页显示 20 50 100
Assessment of liquefaction potential based on shear wave velocity:Strain energy approach
1
作者 Mohammad Hassan Baziar Mahdi Alibolandi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3733-3745,共13页
Liquefaction assessment based on strain energy is significantly superior to conventional stress-based methods.The main purpose of the present study is to investigate the correlation between shear wave velocity and str... Liquefaction assessment based on strain energy is significantly superior to conventional stress-based methods.The main purpose of the present study is to investigate the correlation between shear wave velocity and strain energy capacity of silty sands.The dissipated energy until liquefaction occurs was calculated by analyzing the results of three series of comprehensive cyclic direct simple shear and triaxial tests on Ottawa F65,Nevada,and Firoozkuh sands with varying silt content by weight and relative densities.Additionally,the shear wave velocity of each series was obtained using bender element or resonant column tests.Consequently,for the first time,a liquefaction triggering criterion,relating to effective overburden normalized liquefaction capacity energy(WL=s’c)to effective overburden stresscorrected shear wave velocity(eVs1)has been introduced.The accuracy of the proposed criteria was evaluated using in situ data.The results confirm the ability of shear wave velocity as a distinguishing parameter for separating liquefied and non-liquefied soils when it is calculated against liquefaction capacity energy(WL=s’c).However,the proposed WL=s’c-Vs1 curve,similar to previously proposed cyclic resistance ratio(CRR)-Vs1 relationships,should be used conservatively for fields vulnerable to liquefaction-induced lateral spreading. 展开更多
关键词 LIQUEFACTION strain energy capacity Shear wave velocity Cyclic triaxial test Cyclic direct simple shear test Resonant column test Bender element test
下载PDF
Numerical modeling on strain energy evolution in rock system interaction with energy-absorbing prop and rock bolt 被引量:4
2
作者 Yang Hao Chunhui Liu +4 位作者 Yu Wu Hai Pu Yanlong Chen Lingling Shen Guichen Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第10期1273-1288,共16页
The interaction mechanism between coal and rock masses with supporting materials is significant in roadway control, especially in deep underground mining situations where dynamic hazards frequently happened due to hig... The interaction mechanism between coal and rock masses with supporting materials is significant in roadway control, especially in deep underground mining situations where dynamic hazards frequently happened due to high geo-stress and strong disturbed effects. This paper is to investigate the strain energy evolution in the interaction between coal and rock masses with self-designed energy-absorbing props and rock bolts by numerical modeling with the finite difference method. The interaction between rock and rock bolt/prop is accomplished by the cables element and the interface between the inner and outer props. Roadway excavation and coal extraction conditions in deep mining are numerically employed to investigate deformation, plastic zone ranges, strain energy input, accumulation, dissipation,and release. The effect on strain energy input, accumulation, dissipation, and release with rock deformation, and the plastic zone is addressed. A ratio of strain energy accumulation, dissipation, and release with energy input a, β, γ is to assess the dynamic hazards. The effects on roadway excavation and coal extraction steps of a, β, γ are discussed. The results show that:(1) In deep high geo-stress roadways, the energyabsorbing support system plays a dual role in resisting deformation and reducing the scope of plastic zones in surrounding rock, as well as absorbing energy release in the surrounding rock, especially in the coal extraction state to mitigate disturbed effects.(2) The strain energy input, accumulation is dependent on roadway deformation, the strain energy dissipation is relied on plastic zone area and disturbed effects, and strain energy release density is the difference among the three. The function of energyabsorbing rock bolts and props play a key role to mitigate strain energy release density and amount, especially in coal extraction condition, with a peak density value from 4×10^(4) to 1×10^(4)J/m^(3), and amount value from 3.57×10^(8) to 1.90×10^(6)J.(3) When mining is advanced in small steps, the strain energy accumulation is dominated. While in a large step, the released energy is dominant, thus a more dynamic hazards proneness. The energy-absorbing rock bolt and prop can reduce three times strain energy release amount, thus reducing the dynamic hazards. The results suggest that energy-absorbing props and rock bolts can effectively reduce the strain energy in the coal and rock masses, and prevent rock bursts and other hazards.The numerical model developed in this study can also be used to optimize the design of energyabsorbing props and rock bolts for specific mining conditions. 展开更多
关键词 strain energy Coal and rock mass energy-absorbing prop and rock bolt strain energy evolution
下载PDF
Seismic Liquefaction Resistance Based on Strain Energy Concept Considering Fine Content Value Effect and Performance Parametric Sensitivity Analysis 被引量:1
3
作者 Nima Pirhadi Xusheng Wan +3 位作者 Jianguo Lu Jilei Hu Mahmood Ahmad Farzaneh Tahmoorian 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期733-754,共22页
Liquefaction is one of the most destructive phenomena caused by earthquakes,which has been studied in the issues of potential,triggering and hazard analysis.The strain energy approach is a common method to investigate... Liquefaction is one of the most destructive phenomena caused by earthquakes,which has been studied in the issues of potential,triggering and hazard analysis.The strain energy approach is a common method to investigate liquefaction potential.In this study,two Artificial Neural Network(ANN)models were developed to estimate the liquefaction resistance of sandy soil based on the capacity strain energy concept(W)by using laboratory test data.A large database was collected from the literature.One group of the dataset was utilized for validating the process in order to prevent overtraining the presented model.To investigate the complex influence of fine content(FC)on liquefaction resistance,according to previous studies,the second database was arranged by samples with FC of less than 28%and was used to train the second ANN model.Then,two presented ANN models in this study,in addition to four extra available models,were applied to an additional 20 new samples for comparing their results to show the capability and accuracy of the presented models herein.Furthermore,a parametric sensitivity analysis was performed through Monte Carlo Simulation(MCS)to evaluate the effects of parameters and their uncertainties on the liquefaction resistance of soils.According to the results,the developed models provide a higher accuracy prediction performance than the previously publishedmodels.The sensitivity analysis illustrated that the uncertainties of grading parameters significantly affect the liquefaction resistance of soils. 展开更多
关键词 Liquefaction resistance capacity strain energy artificial neural network sensitivity analysis Monte Carlo Simulation
下载PDF
Rockburst proneness considering energy characteristics and sample shape effects
4
作者 Song Luo Fengqiang Gong +1 位作者 Kang Peng Zhixiang Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2441-2465,共25页
Accurate prediction of rockburst proneness is one of challenges for assessing the rockburst risk and selecting effective control measures.This study aims to assess rockburst proneness by considering the energy charact... Accurate prediction of rockburst proneness is one of challenges for assessing the rockburst risk and selecting effective control measures.This study aims to assess rockburst proneness by considering the energy characteristics and qualitative information during rock failure.Several representative rock types in cylindrical and cuboidal sample shapes were tested under uniaxial compression conditions and the failure progress was detected by a high-speed camera.The far-field ejection mass ratio(FEMR)was determined considering the qualitative failure information of the rock samples.The peak-strength energy impact index and the residual elastic energy index were used to quantitatively evaluate the rockburst proneness of both cylindrical and cuboidal samples.Further,the performance of these two indices was analyzed by comparing their estimates with the FEMR.The results show that the accuracy of the residual elastic energy index is significantly higher than that of the peak-strength energy impact index.The residual elastic energy index and the FEMR are in good agreement for both cylindrical and cuboidal rock materials.This is because these two indices can essentially reflect the common energy release mechanism characterized by the mass,ejection velocity,and ejection distance of rock fragments.It suggests that both the FEMR and the residual elastic energy index can be used to accurately measure the rockburst proneness of cylindrical and cuboidal samples based on uniaxial compression test. 展开更多
关键词 Rockburst proneness Sample shape strain energy energy release Far-field ejection mass ratio(FEMR)
下载PDF
Mechanical properties and energy evolution of Beishan shallow-layer granite under different unloading paths
5
作者 WANG Chuanle LI Erbing +4 位作者 ZHANG Dengke HAN Yang LU Hui HE Kang DU Guangyin 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1728-1744,共17页
Rock has mechanical characteristics and a fracture damage mechanism that are closely related to its loading history and loading path. The mechanical properties, fracture damage features, acoustic emission(AE) characte... Rock has mechanical characteristics and a fracture damage mechanism that are closely related to its loading history and loading path. The mechanical properties, fracture damage features, acoustic emission(AE) characteristics, and strain energy evolution of the Beishan shallow-layer granite used in triaxial unloading tests were investigated in this study. Three groups of triaxial tests, namely, conventional triaxial compression test(Group Ⅰ), maintaining deviatoric stress synchronously unloading confining pressure test(Group Ⅱ), and loading axial pressure synchronously unloading confining pressure test(Group Ⅲ), were carried out for the cylindrical granite specimens. AE monitoring device was utilized in these tests to determine the degree to which the AE waves and AE events reflected the degree of rock damage. In addition, the crack stress thresholds of the specimens were determined by volumetric strain method and AE parameter method, and strain energy evolution of the rock was explored in different damage stages. The results show that the shallow-layer granite experiences brittle failure during the triaxial loading test and unloading test, and the rock has a greater damage degree during the unloading test. The crack stress thresholds of these samples vary greatly between tests, but the threshold ratios of all samples are similar in the same crack damage stage. The Mogi-Coulomb strength criterion can better describe the unloading failure strength of the rock. The evolution of the AE parameter characteristics and strain energy differs between the specimens used in different stress path tests. The dissipative strain energy is the largest in Group Ⅱ and the smallest in Group Ⅰ. 展开更多
关键词 Beishan granite Unloading test Mechanical properties Damage mechanism Acoustic emission strain energy
下载PDF
Effect of Elastic Strains on Adsorption Energies of C,H and O on Transition Metal Oxides
6
作者 XIE Tian SONG Erhong 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第11期1292-1302,共11页
Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TM... Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TMOs)are regarded as potential substitutes for PGMs because of their stability in oxidizing environments and excellent catalytic performance.In this study,comprehensive investigation into the influence of elastic strains on the adsorption energies of carbon(C),hydrogen(H)and oxygen(O)on TMOs was conducted.Based on density functional theory(DFT)calculations,these effects in both tetragonal structures(PtO_(2),PdO_(2))and hexagonal structures(ZnO,CdO),along with their respective transition metals were systematically explored.It was identified that the optimal adsorption sites on metal oxides pinpointed the top of oxygen or the top of metal atom,while face-centered cubic(FCC)and hexagonal close-packed(HCP)holes were preferred for the transition metals.Furthermore,under the influence of elastic strains,the results demonstrated significant disparities in the adsorption energies of H and O between oxides and transition metals.Despite these differences,the effect of elastic strains on the adsorption energies of C,H and O on TMOs mirrored those on transition metals:adsorption energies increased under compressive strains,indicating weaker adsorption,and decreased under tension strains,indicating stronger adsorption.This behavior was rationalized based on the d-band model for adsorption atop a metallic atom or the p-band model for adsorption atop an oxygen atom.Consequently,elastic strains present a promising avenue for tailoring the catalytic properties of TMOs. 展开更多
关键词 density functional theory adsorption energy elastic strain engineering transition metal oxide CATALYST
下载PDF
Study on creep deformation and energy development of underground surrounding rock under four‐dimensional support
7
作者 Zhanguo Ma Junyu Sun +3 位作者 Peng Gong Pengfei Yan Nan Cui Ruichong Zhang 《Deep Underground Science and Engineering》 2024年第1期25-38,共14页
There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(here... There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(hereinafter 4D support),as a new support technology,can set the roadway surrounding rock under three‐dimensional pressure in the new balanced structure,and prevent instability of surrounding rock in underground engineering.However,the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown.This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development.The elastic strain energy was analyzed using the program redeveloped in FLAC3D.The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m.With the increase of roadway depth,4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock.Further,4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases.4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months.As confirmed by in situ monitoring results,4D support is more effective for the long‐term stability control of surrounding rock than conventional support. 展开更多
关键词 coal mines elastic strain energy four‐dimensional support large roadway depth long‐term stability control plastic deformation surrounding rock
下载PDF
Using strain energy-based prediction of effective elastic properties in topology optimization of material microstructures 被引量:16
8
作者 Weihong Zhang Gaoming Dai +2 位作者 Fengwen Wang Shiping Sun Hicham Bassir 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第1期77-89,共13页
An alternative strain energy method is proposed for the prediction of effective elastic properties of orthotropic materials in this paper. The method is implemented in the topology optimization procedure to design cel... An alternative strain energy method is proposed for the prediction of effective elastic properties of orthotropic materials in this paper. The method is implemented in the topology optimization procedure to design cellular solids. A comparative study is made between the strain energy method and the well-known homogenization method. Numerical results show that both methods agree well in the numerical prediction and sensitivity analysis of effective elastic tensor when homogeneous boundary conditions are properly specified. Two dimensional and three dimensional microstructures are optimized for maximum stiffness designs by combining the proposed method with the dual optimization algorithm of convex programming. Satisfactory results are obtained for a variety of design cases. 展开更多
关键词 Cellular solids Material design Homogenization method strain energy Topology optimization
下载PDF
Initial densification strain point's determination of honeycomb structure subjected to out-of-plane compression 被引量:3
9
作者 WANG Zhong-gang ZHOU Wei LIU Jie-fu 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第7期1671-1675,共5页
Compression ratio is significant for cellular structures on energy absorption. In the present work, theoretical formulas to determine the initial densification strain of honeycomb structure were put forward by means o... Compression ratio is significant for cellular structures on energy absorption. In the present work, theoretical formulas to determine the initial densification strain of honeycomb structure were put forward by means of minimum energy principle. Detailed densification strain points were identified, with full fold model for kinds of specimens. To validate, corresponding numerical simulations were carried out with explicit finite element method. Excellent agreement in terms of initial densification stain point has been observed between the theoretical calculation and numerical simulation. The results show that: (1) a different honeycomb structure has different initial densification strain point, and its geometric configuration of cells plays an evident role on densification; (2) half-wave length of the wrinkle of honeycomb in folding process significantly influences on the densification strain point; (3) the initial densification point is an decreasing power function of the ratio of foil thickness to cell length, with the exponent 2/3. These achievements provide important references for design in cellular energy absorption devices. 展开更多
关键词 HONEYCOMB densification strain full FOLD element half-wave length
下载PDF
Theoretical verification of the rationality of strain energy storage index as rockburst criterion based on linear energy storage law 被引量:9
10
作者 Fengqiang Gong Song Luo +1 位作者 Quan Jiang Lei Xu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期1737-1746,共10页
The rationality of using strain energy storage index(Wet)for evaluating rockburst proneness was theoretically verified based on linear energy storage(LES)law in this study.The LES law is defined as the linear relation... The rationality of using strain energy storage index(Wet)for evaluating rockburst proneness was theoretically verified based on linear energy storage(LES)law in this study.The LES law is defined as the linear relationship between the elastic strain energy stored inside the solid material and the input strain energy during loading.It is used to determine the elastic strain energy and dissipated strain energy of rock specimens at various loading/unloading stress levels.The results showed that the Wetvalue obtained from experiments was close to the corresponding theoretical one from the LES law.Furthermore,with an increase in the loading/unloading stress level,the ratio of elastic strain energy to dissipated strain energy converged to the peak-strength strain energy storage index(Wp et).This index is stable and can better reflect the relative magnitudes of the stored energy and the dissipated energy of rocks at the whole pre-peak stage than the strain energy storage index.The peak-strength strain energy storage index can replace the conventional strain energy storage index as a new index for evaluating rockburst proneness. 展开更多
关键词 Rockburst criterion strain energy storage index Linear energy storage(LES)law Peak-strength strain energy storage index
下载PDF
Energy consumption in rock fragmentation at intermediate strain rate 被引量:16
11
作者 洪亮 周子龙 +2 位作者 尹土兵 廖国燕 叶洲元 《Journal of Central South University》 SCIE EI CAS 2009年第4期677-682,共6页
In order to determine the relationship among energy consumption of rock and its fragmentation, dynamic strength and strain rate, granite, sandstone and limestone specimens were chosen and tested on large-diameter spli... In order to determine the relationship among energy consumption of rock and its fragmentation, dynamic strength and strain rate, granite, sandstone and limestone specimens were chosen and tested on large-diameter split Hopkinson pressure bar (SHPB) equipment with half-sine waveform loading at the strain rates ranging from 40 to 150 s- 1. With recorded signals, the energy consumption, strain rate and dynamic strength were analyzed. And the fragmentation behaviors of specimens were investigated. The experimental results show that the energy consumption density of rock increases linearly with the total incident energy. The energy consumption density is of an exponent relationship with the average size of rock fragments. The higher the energy consumption density, the more serious the fragmentation, and the better the gradation of fragments. The energy consumption density takes a good logarithm relationship with the dynamic strength of rock. The dynamic strength of rock increases with the increase of strain rate, indicating higher strain rate sensitivity. 展开更多
关键词 ROCK large-diameter SHPB test intermediate strain rate energy consumption density fragment distribution dynamic strength
下载PDF
A new extension algorithm for cubic B-splines based on minimal strain energy 被引量:8
12
作者 MO Guo-liang ZHAO Ya-nan 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第12期2043-2049,共7页
Extension of a B-spline curve or surface is a useful function in a CAD system. This paper presents an algorithm for extending cubic B-spline curves or surfaces to one or more target points. To keep the extension curve... Extension of a B-spline curve or surface is a useful function in a CAD system. This paper presents an algorithm for extending cubic B-spline curves or surfaces to one or more target points. To keep the extension curve segment GC^2-continuous with the original one, a family of cubic polynomial interpolation curves can be constructed. One curve is chosen as the solution from a sub-class of such a family by setting one GC^2 parameter to be zero and determining the second GC^2 parameter by minimizing the strain energy. To simplify the final curve representation, the extension segment is reparameterized to achieve C-continuity with the given B-spline curve, and then knot removal from the curve is done. As a result, a sub-optimized solution subject to the given constraints and criteria is obtained. Additionally, new control points of the extension B-spline segment can be determined by solving lower triangular linear equations. Some computing examples for comparing our method and other methods are given. 展开更多
关键词 GC^2-continuous EXTENSION Minimal strain energy Knot removal Reparametrization
下载PDF
Modal Strain Energy Based Structural Damage Localization for Offshore Platform using Simulated and Measured Data 被引量:5
13
作者 WANG Shuqing LIU Fushun ZHANG Min 《Journal of Ocean University of China》 SCIE CAS 2014年第3期397-406,共10页
Modal strain energy based methods for damage detection have received much attention. However, most of published articles use numerical methods and some studies conduct modal tests with simple 1D or 2D structures to ve... Modal strain energy based methods for damage detection have received much attention. However, most of published articles use numerical methods and some studies conduct modal tests with simple 1D or 2D structures to verify the damage detection algorithms. Only a few studies utilize modal testing data from 3D frame structures. Few studies conduct performance comparisons between two different modal strain energy based methods. The objective of this paper is to investigate and compare the effectiveness of a traditional modal strain energy method(Stubbs index) and a recently developed modal strain energy decomposition(MSED) method for damage localization, for such a purpose both simulated and measured data from an offshore platform model being used. Particularly, the mode shapes used in the damage localization are identified and synthesized from only two measurements of one damage scenario because of the limited number of sensors. The two methods were first briefly reviewed. Next, using a 3D offshore platform model, the damage detection algorithms were implemented with different levels of damage severities for both single damage and multiple damage cases. Finally, a physical model of an offshore steel platform was constructed for modal testing and for validating the applicability. Results indicate that the MSED method outperforms the Stubbs index method for structural damage detection. 展开更多
关键词 offshore platform damage localization strain energy mode shapes modal testing
下载PDF
Vibro-acoustic Radiation Characteristics Analysis of Railway Vehicle Wheel with Damping Ridges Based on Modal Strain Energy 被引量:2
14
作者 HE Bin XIAO Xinbiao +1 位作者 JIN Xuesong FANG Jianying 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第6期1056-1067,共12页
The existing researches on the damping wheel mainly focus on investigating the influence of damping structure change on the vibro-acoustic control.The changes include the geometric size of the damping structure,the da... The existing researches on the damping wheel mainly focus on investigating the influence of damping structure change on the vibro-acoustic control.The changes include the geometric size of the damping structure,the damping material parameters,and the placement,and so on.In order to further understand the mechanism in reducing the acoustic radiation of railway wheel with layer damping treatment,in this paper,the wheel is simply modified by a full-sized circular plate.The circle plate side has stuck circumference constrained damping ridges and radial constrained damping ridges on it.Based on a hybrid finite element method-boundary element method(FEM-BEM),the paper develops a vibro-acoustic radiation model for such a distributed constrained damping structure.The vibration and acoustic radiation of the circular plate is analyzed.In the analysis,the dynamic response of the system is obtained by using the 3D finite model superposition method.The obtained vibration response is used as the initial boundary condition in solving Helmholtz boundary integral equation for the sound radiation analysis.In the procedure,firstly,the modal analysis of the circular plate is performed to get the distribution of the system modal strain energy.Secondly,the vibro-acoustic radiation characteristics of the plate with different kinds of circumference damping ridges and radial damping ridges are compared in order to try to find the best effective damping ridge structure.Thirdly,using the distribution of the plate modal strain energy investigates the effect of the ridge distribution locations on the circular plate on its vibro-acoustic radiation.The calculation and analysis research results show that,the sticking circumference and radial damping ridges on the plate can control the vibro-acoustic radiation of the plate effectively in different frequency range.The distribution of the constrained damping ridge has an effect on reduction in vibro-acoustic radiation of the circular plate.The present research is very useful in the design of railway wheel with low noise level. 展开更多
关键词 wheel/rail noise vibro-acoustic radiation circumference damping ridge radial damping ridge modal strain energy
下载PDF
An Improved Modal Strain Energy Method for Damage Detection in Offshore Platform Structures 被引量:3
15
作者 Yingchao Li Shuqing Wang +1 位作者 Min Zhang Chunmei Zheng 《Journal of Marine Science and Application》 CSCD 2016年第2期182-192,共11页
The development of robust damage detection methods for offshore structures is crucial to prevent catastrophes caused by structural failures. In this research, we developed an Improved Modal Strain Energy (IMSE) meth... The development of robust damage detection methods for offshore structures is crucial to prevent catastrophes caused by structural failures. In this research, we developed an Improved Modal Strain Energy (IMSE) method for detecting damage in offshore platform structures based on a traditional modal strain energy method (the Stubbs index method). The most significant difference from the Stubbs index method was the application of modal frequencies. The goal was to improve the robustness of the traditional method. To demonstrate the effectiveness and practicality of the proposed IMSE method, both numerical and experimental studies were conducted for different damage scenarios using a jacket platform structure. The results demonstrated the effectiveness of the IMSE method in damage location when only limited, spatially incomplete, and noise-polluted modal data is available. Comparative studies showed that the IMSE index outperformed the Stubbs index and exhibited stronger robustness, confirming the superiority of the proposed approach. 展开更多
关键词 damage detection modal strain energy offshoreplatform structure modal frequency mode shape
下载PDF
Fault on-off versus strain rate and earthquakes energy 被引量:5
16
作者 C.Doglioni S.Barba +1 位作者 E.Carminati F.Riguzzi 《Geoscience Frontiers》 SCIE CAS CSCD 2015年第2期265-276,共12页
We propose that the brittle-ductile transition (BDT) controls the seismic cycle. In particular, the movements detected by space geodesy record the steady state deformation in the ductile lower crust, whereas the sti... We propose that the brittle-ductile transition (BDT) controls the seismic cycle. In particular, the movements detected by space geodesy record the steady state deformation in the ductile lower crust, whereas the stick-slip behavior of the brittle upper crust is constrained by its larger friction. GPS data allow analyzing the strain rate along active plate boundaries. In all tectonic settings, we propose that earthquakes primarily occur along active fault segments characterized by relative minima of strain rate, segments which are locked or slowly creeping. We discuss regional examples where large earthquakes happened in areas of relative low strain rate. Regardless the tectonic style, the interseismic stress and strain pattern inverts during the coseismic stage. Where a dilated band formed during the interseismic stage, this will be shortened at the coseismic stage, and vice-versa what was previously shortened, it will be dilated. The interseismic energy accumulation and the coseismic expenditure rather depend on the tectonic setting (extensional, contractional, or strike-slip). The gravitational potential energy dominates along normal faults, whereas the elastic energy prevails for thrust earthquakes and performs work against the gravity force. The energy budget in strike-slip tectonic setting is also primarily due elastic energy. Therefore, precursors may be different as a function of the tectonic setting. In this model, with a given displacement, the magnitude of an earthquake results from the coseismic slip of the deformed volume above the BDT rather than only on the fault length, and it also depends on the fault kinematics. 展开更多
关键词 Earthquake generation mode strain rate Brittle-ductile transition Earthquake energy
下载PDF
A numerical study of rock burst development and strain energy release 被引量:16
17
作者 Wang Li Lu ZhongLiang Gao Qian 《International Journal of Mining Science and Technology》 SCIE EI 2012年第5期675-680,共6页
We consider rock burst to be a dynamic disaster similar to earthquakes,rapid land sliding,or coal mine gas dynamic disasters.Multi-scale mechanical principles imply the same mechanism of damage evolution proceeds the ... We consider rock burst to be a dynamic disaster similar to earthquakes,rapid land sliding,or coal mine gas dynamic disasters.Multi-scale mechanical principles imply the same mechanism of damage evolution proceeds the catastrophe.Damage may occur at various scales from a meso-scopic scale to a macroscopic,or engineering scale.Rock burst is a catastrophe at the scale of the engineering structure,such as a tunnel cross section or the work face of a long wall mine.It results from dynamic fracture of the structure where microscopic damage nucleates,expands,and finally propagates into a macroscopic sized fracture band.Rock burst must,therefore,undergo a relatively long development,or gestation,time before its final appearance.In this paper,a study of rock burst within a deeply buried tunnel by numerical methods is described.The results show that during rock burst gestation the distributed microscopic damage in the rock surrounding the tunnel localizes,intersects,and then evolves into a set of concentrated ''V'' shaped damage bands.These concentrated damage bands propagate in the direction of maximum shear as shearing slide bands take shape.Rock burst happens within the wedge separated by the shear bands from the native tunnel rock.An analysis of the wedge fracture shows that the unloading effects result in rock burst and rapid release of the strain energy.The implications for rock burst prediction in tunnels are that:(1) rock burst develops in the upper arch corners of in the tunnel cross section prior to developing in other zones,so good attention must be paid there;(2) all monitoring,prevention,and treatment of rock burst should be done during the gestation phase;(3) the shear bands contain abundant information concerning the physics and mechanics of the process and they are the foundation of physical and mechanical monitoring of acoustic emission,micro seismic events,stress,and the like.Thus a special study of the shearing mechanism is required. 展开更多
关键词 Rock burst Gestation Shearing sliding bands Wedge strain energy
下载PDF
Accurate theoretical evaluation of strain energy of all-carboatomic ring(cyclo[2n]carbon),boron nitride ring,and cyclic polyacetylene 被引量:1
18
作者 Tian Lu Zeyu Liu Qinxue Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第12期357-363,共7页
Cyclocarbon fully consists of sp-hybridized carbon atoms,which shows quite unusual electronic and geometric structures compared to common molecules.In this work,we systematically studied strain energy(SE)of cyclocarbo... Cyclocarbon fully consists of sp-hybridized carbon atoms,which shows quite unusual electronic and geometric structures compared to common molecules.In this work,we systematically studied strain energy(SE)of cyclocarbons of different sizes using regression analysis method based on electronic energies evaluated at the very accurate DLPNO-CCSD(T)/ccp VTZ theoretical level.In addition,ring strain of two systems closely related to cyclocarbon,boron nitride(BN)ring,and cyclic polyacetylene(c-PA),is also explored.Very ideal relationships between SE and number of repeat units(n)are built for cyclo[2n]carbon,B_(n)N_(n),and[2n]c-PA as SE=555.0·n^(-1),145.1·n^(-1),and 629.8·n^(-1)kcal·mol^(-1),respectively,and the underlying reasons of the difference and similarity in their SEs are discussed from electronic structure perspective.In addition,force constant of harmonic potential of C-C-C angles in cyclocarbon is derived based on SE values,the result is found to be 56.23 kcal·mol^(-1)·rad^(-2).The possibility of constructing homodesmotic reactions to calculate SEs of cyclocarbons is also explored in this work,although this method is far less rigorous than the regression analysis method,its result is qualitatively correct and has the advantage of much lower computational cost.In addition,comparisons show thatωB97XD/def2-TZVP is a good inexpensive alternative to the DLPNO-CCSD(T)/cc-p VTZ for evaluating energies used in deriving SE,while the popular and very cheap B3LYP/6-31G(d)level should be used with caution for systems with global electron conjugation such as c-PA. 展开更多
关键词 strain energy ring strain carbon boron nitride ring cyclic polyacetylene quantum chemistry
下载PDF
Influence of screw length and diameter on tibial strain energy density distribution after anterior cruciate ligament reconstruction 被引量:2
19
作者 Jie Yao Guan-Ming Kuang +3 位作者 Duo Wai-Chi Wong Wen-Xin Niu Ming Zhang Yu-Bo Fan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第2期241-249,共9页
Postoperative tunnel enlargement has been frequently reported after anterior cruciate ligament(ACL)reconstruction.Interference screw,as a surgical implant in ACL reconstruction,may influence natural loading transmis... Postoperative tunnel enlargement has been frequently reported after anterior cruciate ligament(ACL)reconstruction.Interference screw,as a surgical implant in ACL reconstruction,may influence natural loading transmission and contribute to tunnel enlargement.The aims of this study are(1)to quantify the alteration of strain energy density(SED)distribution after the anatomic single-bundle ACL reconstruction;and(2)to characterize the influence of screw length and diameter on the degree of the SED alteration.A validated finite element model of human knee joint was used.The screw length ranging from 20 to 30 mm with screw diameter ranging from 7 to 9 mm were investigated.In the post-operative knee,the SED increased steeply at the extra-articular tunnel aperture under compressive and complex loadings,whereas the SED decreased beneath the screw shaft and nearby the intra-articular tunnel aperture.Increasing the screw length could lower the SED deprivation in the proximal part of the bone tunnel;whereas increasing either screw length or diameter could aggravate the SED deprivation in the distal part of the bone tunnel.Decreasing the elastic modulus of the screw could lower the bone SED deprivation around the screw.In consideration of both graft stability and SED alteration,a biodegradable interference screw with a long length is recommended,which could provide a beneficial mechanical environment at the distal part of the tunnel,and meanwhile decrease the bone-graft motion and synovial fluid propagation at the proximal part of the tunnel.These findings together with the clinical and histological factors could help to improve surgical outcome,and serve as a preliminary knowledge for the following study of biodegradable interference screw. 展开更多
关键词 Anterior crucial ligament reconstruction strain energy density Screw length Screw diameter
下载PDF
Topology Optimal Design of Material Microstructures Using Strain Energy-based Method 被引量:24
20
作者 Zhang Weihong Wang Fengwen Dai Gaoming Sun Shiping 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第4期320-326,共7页
Sensitivity analysis and topology optimization of microstructures using strain energy-based method is presented. Compared with homogenization method, the strain energy-based method has advantages of higher computing e... Sensitivity analysis and topology optimization of microstructures using strain energy-based method is presented. Compared with homogenization method, the strain energy-based method has advantages of higher computing efficiency and simplified programming. Both the dual convex programming method and perimeter constraint scheme are used to optimize the 2D and 3D microstructures. Numerical results indicate that the strain energy-based method has the same effectiveness as that of homogenization method for orthotropic materials. 展开更多
关键词 strain energy-based method homogenization method microstructure design topology optimization
下载PDF
上一页 1 2 133 下一页 到第
使用帮助 返回顶部