Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considere...Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.展开更多
The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.H...The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.However,whether an increased maize density can compensate for the negative effects of reduced water and N supply on grain yield and N uptake in the arid irrigated areas remains unknown.This study is part of a long-term positioning trial that started in 2016.A split-split plot field experiment of maize was implemented in the arid irrigated area of northwestern China in 2020 to 2021.The treatments included two irrigation levels:local conventional irrigation reduced by 20%(W1,3,240 m^(3)ha^(-1))and local conventional irrigation(W2,4,050 m^(3)ha^(-1));two N application rates:local conventional N reduced by 25%(N1,270 kg ha^(-1))and local conventional N(360 kg ha^(-1));and three planting densities:local conventional density(D1,75,000 plants ha^(-1)),density increased by 30%(D2,97,500 plants ha-1),and density increased by 60%(D3,120,000 plants ha^(-1)).Our results showed that the grain yield and aboveground N accumulation of maize were lower under the reduced water and N inputs,but increasing the maize density by 30% can compensate for the reductions of grain yield and aboveground N accumulation caused by the reduced water and N supply.When water was reduced while the N application rate remained unchanged,increasing the planting density by 30% enhanced grain yield by 13.9% and aboveground N accumulation by 15.3%.Under reduced water and N inputs,increasing the maize density by 30% enhanced N uptake efficiency and N partial factor productivity,and it also compensated for the N harvest index and N metabolic related enzyme activities.Compared with W2N2D1,the N uptake efficiency and N partial factor productivity increased by 28.6 and 17.6%under W1N1D2.W1N2D2 had 8.4% higher N uptake efficiency and 13.9% higher N partial factor productivity than W2N2D1.W1N2D2 improved urease activity and nitrate reductase activity by 5.4% at the R2(blister)stage and 19.6% at the V6(6th leaf)stage,and increased net income and the benefit:cost ratio by 22.1 and 16.7%,respectively.W1N1D2 and W1N2D2 reduced the nitrate nitrogen and ammoniacal nitrogen contents at the R6 stage in the 40-100 cm soil layer,compared with W2N2D1.In summary,increasing the planting density by 30% can compensate for the loss of grain yield and aboveground N accumulation under reduced water and N inputs.Meanwhile,increasing the maize density by 30% improved grain yield and aboveground N accumulation when water was reduced by 20% while the N application rate remained constant in arid irrigation areas.展开更多
Mung bean (Vigna radiata L. Wilczek.) is a warm-season, C<sub>3</sub> pulse crop of the legume family that has been widely cultivated in Asian countries. As the demand for mung bean continues to increase i...Mung bean (Vigna radiata L. Wilczek.) is a warm-season, C<sub>3</sub> pulse crop of the legume family that has been widely cultivated in Asian countries. As the demand for mung bean continues to increase in the United States, the ecophysiology, growth, and yield of mung bean varieties in the southeastern US need to be assessed. A field experiment was conducted at the Agricultural Research and Education Center of Tennessee State University to investigate the effects of four varieties (OK2000, Berken, TSU-1, AAMU-1) and three planting densities (5, 10, and 15 cm spacing) on the ecophysiology and yield of mung bean. Results showed that the relative chlorophyll content, plant height, pod dry biomass, pod number, crop yield, and harvest index significantly varied among the varieties. Density only influenced transpiration, relative chlorophyll content, and plant dry biomass. OK2000 had 101.0% more pods per plant and a 42.4% higher harvest index and produced a 45.3% higher yield than other varieties, but no significant difference in yield was found among the other three varieties. This study demonstrated that the mung bean variety OK2000 with a high yield would be ideal for commercial production in the southeastern US.展开更多
[Objective] This study aimed to explore agronomical measures to reduce the mechanical harvesting loss of rapeseed. [Method] Two rapeseed cultivars, Ningza 19 and Ningza 21, with certain pod-cracking resistance, were e...[Objective] This study aimed to explore agronomical measures to reduce the mechanical harvesting loss of rapeseed. [Method] Two rapeseed cultivars, Ningza 19 and Ningza 21, with certain pod-cracking resistance, were employed in field experiments. The two-factor split plot design and randomized complete block design were adopted. The rapeseed seeds were directly sowed with four different seeding rates (1.50, 2.25, 3.00 and 3.75 kg/hm2). A total of four treatments were designed (112 500, 225 000, 337 500 and 450 000 plants/hm2). After ripe, the rapeseed was harvested with harvester. Then the yield and harvesting loss rate were determined. [Result] When the planting density ranged from 112 500 to 450 000 plants/hm2, the mechanical harvesting loss rate was decreased with the increase of planting density (Ningza 19, 7.54%-4.01%; Ningza 21, 7.19%-3.81%). The total loss rates were all below 5% for the high plant densities, 337 500 and 450 000 plants/hm2. High planting density had certain regulating effects on plant type of rapeseed, including reducing plant height, reducing biomass per plant, reducing branch pod numbers per plant, weakening crossing and tangling among stems and improving ripening uniformity of pods. All the changes above were all conducive to reducing mechanical harvesting loss. In addition, the test results showed after the pods grew to maturity, especially when pods were yellow and the moisture content in grains was reduced to 11%, the mechanical harvesting loss only accounted for about 1% of the total field loss. In addition, the shattering loss, caused by mild col- lision, represented more than 90%, and the cleaning loss, occurred during the threshing and cleaning process, represented 4%-8% of the total field loss. The un- harvesting loss accounted for approximately 1% of the total loss. The shattering loss is closely related to cultivar characteristics, planting density, production level and other agronomic factors. The cleaning loss is determined by properties of harvesting machines. The unharvesting loss depends on mechanical properties ad skills of workers or farmers who drive harvesting machines. [Conclusion] In order to reduce mechanical harvesting loss, the rapeseed production should be improved from the perspectives of agricultural machinery and agronomic measures.展开更多
[Objective] The aim was to resolve the issue of sparsely planting (37 500-40 500 plants/hm2) of sweet potato in hilly areas. [Method] The starch-oriented Jishu No.21 and raw-eating oriented Jishu No.22 were studied ...[Objective] The aim was to resolve the issue of sparsely planting (37 500-40 500 plants/hm2) of sweet potato in hilly areas. [Method] The starch-oriented Jishu No.21 and raw-eating oriented Jishu No.22 were studied to explore effects of planting density on yield and sink and source characteristics of sweet potato. [IRe- suit] Leaf area index of Jishu No.21 and Jishu No.22 were increasing upon planting density. Leaf area index of the same planting density showed a single-peak curve. Specifically, leaf area index grew fast during the 40th-80th d after planting, and reached the peak on the 80th d after planting, followed by decreasing. What's more, ventilation and sunshine transmission both declined upon planting density, as well as the number of leaf, the number of branch, the length of vine, dry and fresh weights of stem and leaf. When planting density exceeded 75 000 plants/hm2, the yield of sweet potato dropped dramatically. Besides, the optimal planting density tended to be volatile upon cultivars. For example, the range of 45 000-60 000 plants/hm2 is the optimal planting density of Jishu No.21 and the range of 60 000-75 000 plants/hm2 is the optimal planting density of Jishu No.22. [Conclusion] It can be concluded that rational planting densities would well coordinate sweet potato growth of ground parts and underground parts to get a high yield by providing a rational group structure. Considering the optimal planting density differs upon cultivars, it is necessary to take genotype, environment, soil fertility and planting density into consideration in determining planting density.展开更多
[Objective] The experiment was conducted to explore the suitable planting density and nitrogen amount for summer maize in Sichuan Basin with the objective to provide technical reservation and scientific basis for high...[Objective] The experiment was conducted to explore the suitable planting density and nitrogen amount for summer maize in Sichuan Basin with the objective to provide technical reservation and scientific basis for high-yielding cultivation technique.[Method] A widely planted maize cultivar 'Chengdan 30' was used as experimental material to study the effects of planting density and nitrogen amount on the stalk agronomic traits,stalk lodging-resistance mechanical characters,stalk breaking percentage and yield of maize.Experiment was arranged in a two-factor split plot design with three replicates.The planting density was the main factor with three density gradients(4.5×10^4,6.0×10^4 and 7.5×10^4 plants/hm^2) and the nitrogen amount was the second factor with two different levels of nitrogen content(300 and 375 kg/hm^2).[Result] The stalk lodging-resistance and yield were affected by planting density significantly.The increase of planting density would result in an increase of internode length and decrease of internode diameter,dry matter weight of per unit stalk length,rind penetration strength and breaking resistance of 3rd and 4th basal internodes.When planting density increased from 6.0×10^4 plants/hm2 to 7.5×10^4 plants/hm^2,the stalk breaking percentage in the whole growing season increased by 17.17%,and the yield reduced by 17.58%.The interaction between planting density and nitrogen amount affected the stalk breaking percentage in the whole growing season and yield significantly.The treatment with planting density of 6.0×104 plants/hm^2 and nitrogen amount of 375 kg/hm^2 of pure N was an optimal combination,which may not only control the stalk breaking percentage of whole growing stage effectively,but also could obtain an optimum grain yield.[Conclusion] In Sichuan Basin,the appropriate planting density and nitrogen amount for summer maize were 6.0×10^4 plants/hm^2 and 375 kg/hm^2.展开更多
[ Objective] This study was to understend the optimized combination of planting density, duration of disclosing plastic film and nitrogen fertilization under no-tillage cultivation. [ Method] Quadratic polynomial regr...[ Objective] This study was to understend the optimized combination of planting density, duration of disclosing plastic film and nitrogen fertilization under no-tillage cultivation. [ Method] Quadratic polynomial regression and saturated D-optimal design were employed to investigate the effects of planting density, duration of disclosing plastic film and nitrogen fertilization on the dynamics growth of rapeseed under no-tillage cultivation.[ Result] Within the experimental range, the growth dynamics of no-tillage cultivated rapeseed assumed a rise-fall tend. For the effects to the growth dynamics of no-tillage cultivated rapeseed, nitrogen application amount was higher than planting density and duration of disclosing plastic film. The interaction effect between planting density and duration of disclosing plastic film was higher than that between nitrogen application amount and planting density, and between nitrogen application amount and duration of disclosing plastic film. [ Conclusion] The optimized combination of these factors for dynamic growth of rapeseed under no-tillage cultivation was determined to be: planting density of per hectare 154 925 individuals, duration of disclosing plastic film of 110 d, nitrogen application amount of 315 kg/hm^2.展开更多
[Objective] The experiment was conducted to study suitable date of seed- ing and density of spring potato at the stock breeding base in Ebian County at an elevation of 1 200 to 1 500 m. [Methods] Virus-free Potato "C...[Objective] The experiment was conducted to study suitable date of seed- ing and density of spring potato at the stock breeding base in Ebian County at an elevation of 1 200 to 1 500 m. [Methods] Virus-free Potato "Chuanyu 13" was used as material to study the effects of date of seeding and density on growing period, germination rate, yield and water use efficiency of spring potato in the field. [Result] With the postponement of date of seeding, the days from sowing to germination shortened, while the germination rate, the number of tubers per plant, the number of middle and small tubers in a group, yield and water use efficiency all increased. Planting density had no effects on the days from sowing to germination and the ger- mination rate, while the number of tubers per ptant, the number of middle and small tubers in a group, yield and water use efficiency increased significantly along with the increasing planting density. [Conclusion] At an elevation of 1 200 m to 1 250 m in Ebian County, the suitable date of seeding for potato was from February 9 to March 1, and the suitable planting density was 12×10^4 plants per hm^2, however, in the optimum planting density has not been found so that it needs further research,展开更多
The effects ol different genotypes and planting densities on main agronomic traits, storage root traits and yield were studied with 6 high-quality sweetpotato varieties as study objects by 2-factor completely random d...The effects ol different genotypes and planting densities on main agronomic traits, storage root traits and yield were studied with 6 high-quality sweetpotato varieties as study objects by 2-factor completely random design. The results showed that there were significant differences in stem diameter, length of the longest vine and top/root (T/R) between different genotypes, T/R differed significantly under dif- ferent planting densities, and number of basal branches decreased with planting density increasing. Genotype and genotype x density showed significant or very sig- nificant effects on fresh root yield per plant, dry matter content and fresh root yield per hectare, fresh root yield per plant gradually decreased with planting density in- creasing, while fresh root yield per hectare increased with planting density increas- ing. Numbers of storage roots in different sizes of the 6 sweetpotato cultivars all exhibited an order of number of large-sized storage roots〈number of medium-sized storage roots〈small-sized storage root; and there were very significant differences in ratio of large-sized storage roots between different genotypes. The number of large- sized storage roots, ratio of large-sized storage roots and number of commercial storage roots deceased with planting density increasing, while there were no signifi- cant differences in number of medium-sized storage roots, number of small-sized storage roots, ratio of medium-sized storage roots and ratio of small-sized storage roots between different densities. Correlation analysis showed that there was signifi- cant positive correlation between number of basal branches and fresh root yield per plant; dry matter content in storage roots was in significant positive correlation with stem diameter, and in significant negative correlation with length of the longest vine; fresh root yield per hectare was in significant positive correlation with fresh root yield per plant, and in very significant negative correlation with dry matter content; and ratio of large-sized storage roots was in very significant positive correlation with number of large-sized storage root and fresh root yield per plant, and in very sig- nificant negative correlation with ratio of medium-sized storage roots and ratio of small-sized storage roots. This experiment showed that under the planting density of 7.5×104 plants/hm2, the 6 sweetpotato cultivars all reached the highest numbers of commercial storage roots and fresh root yields per hectare.展开更多
[Objective] The aim was to explore high-yielding cultivation techniques for forage sweet sorghum. [Method[ The effects of planting density and row spacing on plant productivity and grass yield of forage sweet sorghum ...[Objective] The aim was to explore high-yielding cultivation techniques for forage sweet sorghum. [Method[ The effects of planting density and row spacing on plant productivity and grass yield of forage sweet sorghum (Sorghum bicolor (L.) Moench) were compared using split-plot design and LSD method of IBMSPSSStatis- ticsv22. [Result]The planting density and row spacing had important influence on the plant productivity and yield of forage sweet sorghum. The optimum planting density- row spacing combination for plant productivity of forage sweet sorghum was A1B,, i. e., planting density of 75 000 plants/hm2 and row spacing of 40 cm, and the opti- mum combination for yield of forage sweet sorghum was A2B,, i.e., planting density of 225 000 plants/hm2 and row spacing of 40 cm. [Conclusion] This study will pro- vide theoretical basis and technical support for the production practice of forage sweet sorghum.展开更多
Excessive use of nitrogen fertilizer and high planting density reduce grain weight in wheat.However,the effects of high nitrogen and planting density on the filling of grain located in different positions of the wheat...Excessive use of nitrogen fertilizer and high planting density reduce grain weight in wheat.However,the effects of high nitrogen and planting density on the filling of grain located in different positions of the wheat spikelet are unknown.A two-year field experiment was conducted to investigate this question and the underlying mechanisms with respect to hormone and carbohydrate activity.Both high nitrogen application and planting density significantly increased spike density,while reducing kernel number per spike and 1000-kernel weight.However,the effects of high nitrogen and high plant density on kernel number per spike and 1000-kernel weight were different.The inhibitory effect of high nitrogen application and high planting density on kernel number per spike was achieved mainly by a reduction in kernel number per spikelet in the top and bottom spikelets.However,the decrease in 1000-kernel weight was contributed mainly by the reduced weight of grain in the middle spikelets.The grain-filling rate of inferior grain in the middle spikelets was significantly decreased under high nitrogen input and high planting density conditions,particularly during the early and middle grain-filling periods,leading to the suppression of grain filling and consequent decrease in grain weight.This effect resulted mainly from inhibited sucrose transport to and starch accumulation in inferior grain in the middle spikelets via reduction of the abscisic acid/ethylene ratio.This mechanism may explain how high nitrogen application and high planting density inhibit the grain filling of inferior wheat grain.展开更多
To date,little attention has been paid to the effects of leaf source reduction on photosynthetic matter production,root function and post-silking N uptake characteristics at different planting densities.In a 2-year fi...To date,little attention has been paid to the effects of leaf source reduction on photosynthetic matter production,root function and post-silking N uptake characteristics at different planting densities.In a 2-year field experiment,Xianyu 335,a widely released hybrid in China,was planted at 60 000 plants ha^(–1 )(conventional planting density,CD) and 90 000 plants ha^(–1) (high planting density,HD),respectively.Until all the filaments protruded from the ear,at which point the plants were subjected to the removal of 1/2 (T1),1/3 (T2) and 1/4 (T3) each leaf length per plant,no leaf removal served as the control(CK).We evaluated the leaf source reduction on canopy photosynthetic matter production and N accumulation of different planting densities.Under CD,decreasing leaf source markedly decreased photosynthetic rate (P_(n)),effective quantum yield of photosystem II (ΦPSII) and the maximal efficiency of photosystem II photochemistry (F_(v)/F_(m)) at grain filling stage,reduced post-silking dry matter accumulation,harvest index (HI),and the yield.Compared with the CK,the 2-year average yields of T1,T2 and T3 treatments decreased by 35.4,23.8 and 8.3%,respectively.Meanwhile,decreasing leaf source reduced the root bleeding sap intensity,the content of soluble sugar in the bleeding sap,post-silking N uptake,and N accumulation in grain.The grain N accumulation in T1,T2 and T3 decreased by 26.7,16.5 and 12.8% compared with CK,respectively.Under HD,compared to other treatments,excising T3 markedly improved the leaf P_(n),ΦPSII and F_(v)/F_(m) at late-grain filling stage,increased the post-silking dry matter accumulation,HI and the grain yield.The yield of T3 was 9.2,35.7 and 20.1% higher than that of CK,T1 and T2 on average,respectively.The T3 treatment also increased the root bleeding sap intensity,the content of soluble sugar in the bleeding sap and post-silking N uptake and N accumulation in grain.Compared with CK,T1 and T2 treatments,the grain N accumulation in T3 increased by 13.1,40.9 and 25.2% on average,respectively.In addition,under the same source reduction treatment,the maize yield of HD was significantly higher than that of CD.Therefore,planting density should be increased in maize production for higher grain yield.Under HD,moderate decreasing leaf source improved photosynthetic performance and increased the post-silking dry matter accumulation and HI,and thus the grain yield.In addition,the improvement of photosynthetic performance improved the root function and promoted postsilking N uptake,which led to the increase of N accumulation in grain.展开更多
Field experiments were conducted from 2012 to 2015 in an arid region of Northwest China to investigate the effects of planting density on plant growth, yield, and water use efficiency(WUE) of maize for seed producti...Field experiments were conducted from 2012 to 2015 in an arid region of Northwest China to investigate the effects of planting density on plant growth, yield, and water use efficiency(WUE) of maize for seed production. Five planting densities of 6.75, 8.25, 9.75, 11.25 and 12.75 plants/m^2 were conducted in 2012, and a planting density of 14.25 plants/m^2 was added from 2013 to 2015. Through comparison with the Aqua Crop yield model, a modified model was developed to estimate the biomass accumulation and yield under different planting densities using adjustment coefficient for normalized biomass water productivity and harvest index. It was found that the modified yield model had a better performance and could generate results with higher determination coefficient and lower error. The results indicated that higher planting density increased the leaf area index and biomass accumulation, but decreased the biomass accumulation per plant. The total yield increased rapidly as planting density increased to 11.25 plants/m^2, but only a slight increase was observed when the density was greater than 11.25 plants/m^2. The WUE also reached the maximum when planting density was 11.25 plants/m^2, which was the recommended planting density of maize for seed production in Northwest China.展开更多
C. acuminata seedlings cultivated in greenhouse were transplanted into the fields with 5 designed planting densities (11, 16, 25,44 and 100 plants·m^-2) in May of 2004 and were harvested in the middle of Septembe...C. acuminata seedlings cultivated in greenhouse were transplanted into the fields with 5 designed planting densities (11, 16, 25,44 and 100 plants·m^-2) in May of 2004 and were harvested in the middle of September of 2004. The seedling growth indexes including plant height and crown width, biomass allocation, camptothecin (CPT) content and CPT yield of different organs (young leaf, old leaf, stem,and root) were studied. For the 5 selected planting densities, the plant biomass, height, crown width, and total leaf area of C. acuminata seedlings all showed highest values at the planting density of 25 plants ·m^-2. CPT content in young leaves was higher than that in other organs of seedlings and presented an obvious change with the variation of planting densities and with the highest value at density of 100plants·m-2, while for other organs no significant variation in CPT content was found with change of planting density. The accumulation of CPT was enhanced significantly at the planting density of 25 plants·m^-2. It is concluded that for the purpose to get raw materials with more CPT from C. acuminata, the optimal planting density of C. acuminata seedlings should be designed as 25 plants·m^-2.展开更多
Cotton yield per unit ground area has stagnated for a dozen years in Hubei Province, China, although a series of new high- yielding varieties have been commercialized. A multi-location investigation was carried out in...Cotton yield per unit ground area has stagnated for a dozen years in Hubei Province, China, although a series of new high- yielding varieties have been commercialized. A multi-location investigation was carried out in 2008 and 2009 in 13 counties to determine if increased planting population density (PPD) would break the stagnant yield. The results showed that significant differences among the fields existed in theoretical yield, PPD, and bolls per square meter (BPM). The lowest yield of 1 641.1 kg ha-I was resulted from the lowest PPD of 1.7 plants m-2 and the lowest BPM of 71.8 bolls m-2, while the highest yield of 2 779.7 kg ha-~ was resulted from the highest PPD of 2.5 plants m-2, and the highest BPM of 129.4 bolls m-z. Plant mapping revealed that boll retention rate (BRR) was maintained over 30 or 40% for the first 17-18 fruiting branches (FBs) and decreased dramatically thereafter, rotten boll rate (RBR) decreased, but open boll rate (OBR) rose first and dropped later with rising FB from the bottom to the top. But BRR, RBR, and OBR were all dropped with the fruiting positions (FPs) extending outwards. The optimum range of plant density would be 2-3 plants m-2 and the proper individual plant structure would be 16-19 FBs with 5-7 FPs for cotton production in Hubei Province.展开更多
To address the relationships between the amount of nitrogen fertilizer application and the yield of double cropping rice systems,we investigated the effects of a cultivation pattern of strong seedlings with increased ...To address the relationships between the amount of nitrogen fertilizer application and the yield of double cropping rice systems,we investigated the effects of a cultivation pattern of strong seedlings with increased planting density and reduced nitrogen application(SDN)on the morphological and physiological characteristics of double cropping rice.Our results indicated that the effects of SDN on the morphological characteristics of the single plant roots of double cropping rice were not significant,but the morphological characteristics of the population roots were largely different.Specifically,SDN significantly increased the morphological indexes of the root population such as root fresh weight,root volume,root number,root length and root dry weight.The effects of SDN on the total root absorption areas and root active absorption areas of the single plants were non-significant,but it dramatically enhanced the total root absorption areas and root active absorption areas of the plant population during the tillering,heading and mature stages.In addition,SDN significantly increased the root bleeding intensity and elevated the soluble sugar and free amino acid contents of root bleeding sap.Compared to the traditional cultivation pattern(CK),SDN significantly increased root bleeding intensity at the heading stage by 4.37 and 8.90% for early and late rice,respectively.Meanwhile,SDN profoundly enhanced the soluble sugar contents of root bleeding sap by 12.85 and 10.41% for early and late rice,respectively.In addition,SDN also significantly enhanced free amino acid content of root bleeding sap by 43.25% for early rice and by 37.50% for late rice systems compared to CK.Furthermore,SDN increased the actual yield of double cropping rice mainly due to the higher effective panicle number and the larger seedsetting rate.The actual yields of early rice under SDN were higher than CK by 9.37 and 5.98% in 2016 and 2017,and the actual yields of late rice under SDN were higher than CK by 0.20 and 1.41% in 2016 and 2017,respectively.Correlation analysis indicated that the significant positive correlations were observed between the majority of the root indexes and the actual yield across the four different growth stages.展开更多
With the change of cropping system in the middle reaches of the Yangtze River,the planting area of autumn maize is gradually increasing.However,the cultivation techniques are still under improvement for higher yield a...With the change of cropping system in the middle reaches of the Yangtze River,the planting area of autumn maize is gradually increasing.However,the cultivation techniques are still under improvement for higher yield and nitrogen efficiency of autumn maize.Increase in planting density with reduced nitrogen fertilizer application is one of the important paths to achieve high yield and high nitrogen utilization efficiency.Meanwhile,the effect needs to be verified for autumn maize.The semi-compact autumn maize variety Qinyu 58 was planted under different planting densities and nitrogen fertilizer amounts with the split plot design.Different nitrogen application rates were arranged in the main plots,including the conventional nitrogen application(N300,300 kg/hm^2),30%reduction from the conventional treatment(N210,210 kg/hm^2)and no nitrogen application(N0).Different planting densities were arranged in the sub-split plots,including the conventional planting density(D60,60000 plants/hm2),medium density(D78,78000 plants/hm^2)and high density(D93,93000 plants/hm2).The effects of nitrogen fertilizer,planting density and their interaction effects on canopy structure,dry matter accumulation,yield and nitrogen use efficiency of autumn maize were studied.The nitrogen application rate and planting density had obvious interaction effects on the yield formation of autumn maize.Compared with the conventional cultivation(N300D60),increasing the planting density with 30%reduction in nitrogen application(N210)can obviously increase the canopy light interception rate,LAI,dry matter accumulation and yield.However,there was no significant change in canopy light interception rate,LAI,dry matter accumulation,grain weight and yield between D93 and D78.Compared with N300D60,nitrogen translocation efficiency and nitrogen contribution proportion to grain nitrogen did not change significantly in autumn maize grown under N210 and D78 treatments,whereas nitrogen partial productivity,nitrogen agronomic efficiency and recovery and utilization efficiency of nitrogen fertilizer increased significantly.Moreover,high density(D93)planting at N210 plots significantly improved nitrogen transport efficiency and utilization efficiency in autumn maize.Therefore,the suitable planting density of the autumn maize variety Qinyu 58 in Hubei Province is recommended a value of 78000 plants/hm^2,with the nitrogen application rate of 210 kg/hm2,which can achieve the target of higher yield by increasing density and reducing nitrogen.展开更多
Lodging in maize leads to yield losses worldwide.In this study,we determined the effects of traditional and optimized nitrogen management strategies on culm morphological characteristics,culm mechanical strength,ligni...Lodging in maize leads to yield losses worldwide.In this study,we determined the effects of traditional and optimized nitrogen management strategies on culm morphological characteristics,culm mechanical strength,lignin content,root growth,lodging percentage and production in maize at a high plant density.We compared a traditional nitrogen(N)application rate of 300 kg ha–1(R)and an optimized N application rate of 225 kg ha^(–1)(O)under four N application modes:50%of N applied at sowing and 50%at the 10th-leaf stage(N1);100%of N applied at sowing(N2);40%of N applied at sowing,40%at the 10th-leaf stage and 20%at tasseling stage(N3);and 30%of N applied at sowing,30%at the 10th-leaf stage,20%at the tasseling stage,and 20%at the silking stage(N4).The optimized N rate(225 kg ha^(–1))significantly reduced internode lengths,plant height,ear height,center of gravity height and lodging percentage.The optimized N rate significantly increased internode diameters,filling degrees,culm mechanical strength,root growth and lignin content.The application of N in four split doses(N4)significantly improved culm morphological characteristics,culm mechanical strength,lignin content,and root growth,while it reduced internode lengths,plant height,ear height,center of gravity height and lodging percentage.Internode diameters,filling degrees,culm mechanical strength,lignin content,number and diameter of brace roots,root volume,root dry weight,bleeding safe and grain yield were significantly negatively correlated with plant height,ear height,center of gravity height,internode lengths and lodging percentage.In conclusion,treatment ON4 significantly reduced the lodging percentage by improving the culm morphological characteristics,culm mechanical strength,lignin content,and root growth,so it improved the production of the maize crop at a high plant density.展开更多
Poplar is raw material for various panel, paper and fiber products. The 12 sample trees of clone Nanlin-895 from four spacings were destructively harvested after thirteen growing seasons to assess the influence of spa...Poplar is raw material for various panel, paper and fiber products. The 12 sample trees of clone Nanlin-895 from four spacings were destructively harvested after thirteen growing seasons to assess the influence of spacing on radial growth and wood properties. Spacing significantly affected tree-ring width and wood basic density (p < 0.05) but not fiber traits. The highest diameter and wood basic density at breast height (1.3 m) was in 6 m × 6 m and 3 m × 8 m spacings, respectively. However, no significant differences in tree-ring width, wood basic density and fiber traits were observed among the four sampling directions in discs taken at 1.3 m for each spacing. Growth rings from the pith and tree heights had significant effects on wood basic density and fiber anatomical characteristics, highlighting obvious temporal-spatial variations. Pearson correlation analysis showed a significantly negative relationship of tree-ring width to wood basic density, fiber length and fiber width, but a significantly positive relationship to hemicellulose. There was no relationship with cellulose and lignin contents. Based on a comprehensive assessment by the TOPSIS method, the 6 m × 6 m spacing is recommended for producing wood fiber at similar sites in the future.展开更多
Background Mepiquat chloride(MC)application and plant population density(PPD)increasing are required for modern cotton production.However,their interactive effects on leaf physiology and carbohydrate metabolism remain...Background Mepiquat chloride(MC)application and plant population density(PPD)increasing are required for modern cotton production.However,their interactive effects on leaf physiology and carbohydrate metabolism remain obscure.This study aimed to examine whether and how MC and PPD affect the leaf morpho-physiological characteristics,and thus final cotton yield.PPD of three levels(D1:2.25 plants·m^(-2),D2:4.5 plants·m^(-2),and D3:6.75 plants·m^(-2))and MC dosage of two levels(MC0:0 g·ha^(-2),MC1:82.5 g·ha^(-2))were combined to create six treatments.The dynamics of nonstructual carbohydrate concentration,carbon metabolism-related enzyme activity,and photosynthetic attributes in cotton leaves were examined during reproductive growth in 2019 and 2020.Results Among six treatments,the high PPD of 6.75 plants·m^(-2)combined with MC application(MC1D3)exhibited the greatest seed cotton yield and biological yield.The sucrose,hexose,starch,and total nonstructural carbohydrate(TNC)concentrations peaked at the first flowering(FF)stage and then declined to a minimum at the first boll opening(FBO)stage.Compared with other treatments,MC1D3 improved starch and TNC concentration by 5.4%~88.4%,7.8%~52.0% in 2019,and by 14.6%~55.9%,13.5%~39.7% in 2020 at the FF stage,respectively.Additionally,MC1D3 produced higher transformation rates of starch and TNC from the FF to FBO stages,indicating greater carbon production and utilization efficiency.MC1D3 displayed the maximal specific leaf weight(SLW)at the FBO stage,and the highest chlorophyll a(Chl a),Chl b,and Chl a+b concentration at the mid-late growth phase in both years.The Rubisco activity with MC1D3 was 2.6%~53.2% higher at the flowering and boll setting stages in both years,and 2.4%~52.7% higher at the FBO stage in 2020 than those in other treatments.These results provided a explanation of higher leaf senescence-resistant ability in MC1D3.Conclusion Increasing PPD coupled with MC application improves cotton yield by enhancing leaf carbohydrate production and utilization efficiency and delaying leaf senescence.展开更多
文摘Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.
基金financial support of the National Natural Science Foundation of China(U21A20218 and 32101857)the‘Double First-Class’Key Scientific Research Project of Education Department in Gansu Province,China(GSSYLXM-02)+1 种基金the Fuxi Young Talents Fund of Gansu Agricultural University,China(Gaufx03Y10)the“Innovation Star”Program of Graduate Students in 2023 of Gansu Province,China(2023CXZX681)。
文摘The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.However,whether an increased maize density can compensate for the negative effects of reduced water and N supply on grain yield and N uptake in the arid irrigated areas remains unknown.This study is part of a long-term positioning trial that started in 2016.A split-split plot field experiment of maize was implemented in the arid irrigated area of northwestern China in 2020 to 2021.The treatments included two irrigation levels:local conventional irrigation reduced by 20%(W1,3,240 m^(3)ha^(-1))and local conventional irrigation(W2,4,050 m^(3)ha^(-1));two N application rates:local conventional N reduced by 25%(N1,270 kg ha^(-1))and local conventional N(360 kg ha^(-1));and three planting densities:local conventional density(D1,75,000 plants ha^(-1)),density increased by 30%(D2,97,500 plants ha-1),and density increased by 60%(D3,120,000 plants ha^(-1)).Our results showed that the grain yield and aboveground N accumulation of maize were lower under the reduced water and N inputs,but increasing the maize density by 30% can compensate for the reductions of grain yield and aboveground N accumulation caused by the reduced water and N supply.When water was reduced while the N application rate remained unchanged,increasing the planting density by 30% enhanced grain yield by 13.9% and aboveground N accumulation by 15.3%.Under reduced water and N inputs,increasing the maize density by 30% enhanced N uptake efficiency and N partial factor productivity,and it also compensated for the N harvest index and N metabolic related enzyme activities.Compared with W2N2D1,the N uptake efficiency and N partial factor productivity increased by 28.6 and 17.6%under W1N1D2.W1N2D2 had 8.4% higher N uptake efficiency and 13.9% higher N partial factor productivity than W2N2D1.W1N2D2 improved urease activity and nitrate reductase activity by 5.4% at the R2(blister)stage and 19.6% at the V6(6th leaf)stage,and increased net income and the benefit:cost ratio by 22.1 and 16.7%,respectively.W1N1D2 and W1N2D2 reduced the nitrate nitrogen and ammoniacal nitrogen contents at the R6 stage in the 40-100 cm soil layer,compared with W2N2D1.In summary,increasing the planting density by 30% can compensate for the loss of grain yield and aboveground N accumulation under reduced water and N inputs.Meanwhile,increasing the maize density by 30% improved grain yield and aboveground N accumulation when water was reduced by 20% while the N application rate remained constant in arid irrigation areas.
文摘Mung bean (Vigna radiata L. Wilczek.) is a warm-season, C<sub>3</sub> pulse crop of the legume family that has been widely cultivated in Asian countries. As the demand for mung bean continues to increase in the United States, the ecophysiology, growth, and yield of mung bean varieties in the southeastern US need to be assessed. A field experiment was conducted at the Agricultural Research and Education Center of Tennessee State University to investigate the effects of four varieties (OK2000, Berken, TSU-1, AAMU-1) and three planting densities (5, 10, and 15 cm spacing) on the ecophysiology and yield of mung bean. Results showed that the relative chlorophyll content, plant height, pod dry biomass, pod number, crop yield, and harvest index significantly varied among the varieties. Density only influenced transpiration, relative chlorophyll content, and plant dry biomass. OK2000 had 101.0% more pods per plant and a 42.4% higher harvest index and produced a 45.3% higher yield than other varieties, but no significant difference in yield was found among the other three varieties. This study demonstrated that the mung bean variety OK2000 with a high yield would be ideal for commercial production in the southeastern US.
基金Supported by National High Technology Research and Development Program of China(863 Program)(2011AA10A10403)National Key Technology Research and Development Program(2010BAD01B06)+1 种基金Jiangsu Province Science and Technology Support Program(BE2012327)Jiangsu Agricultural Science and Technology Innovation Fund(CX(14)2003)~~
文摘[Objective] This study aimed to explore agronomical measures to reduce the mechanical harvesting loss of rapeseed. [Method] Two rapeseed cultivars, Ningza 19 and Ningza 21, with certain pod-cracking resistance, were employed in field experiments. The two-factor split plot design and randomized complete block design were adopted. The rapeseed seeds were directly sowed with four different seeding rates (1.50, 2.25, 3.00 and 3.75 kg/hm2). A total of four treatments were designed (112 500, 225 000, 337 500 and 450 000 plants/hm2). After ripe, the rapeseed was harvested with harvester. Then the yield and harvesting loss rate were determined. [Result] When the planting density ranged from 112 500 to 450 000 plants/hm2, the mechanical harvesting loss rate was decreased with the increase of planting density (Ningza 19, 7.54%-4.01%; Ningza 21, 7.19%-3.81%). The total loss rates were all below 5% for the high plant densities, 337 500 and 450 000 plants/hm2. High planting density had certain regulating effects on plant type of rapeseed, including reducing plant height, reducing biomass per plant, reducing branch pod numbers per plant, weakening crossing and tangling among stems and improving ripening uniformity of pods. All the changes above were all conducive to reducing mechanical harvesting loss. In addition, the test results showed after the pods grew to maturity, especially when pods were yellow and the moisture content in grains was reduced to 11%, the mechanical harvesting loss only accounted for about 1% of the total field loss. In addition, the shattering loss, caused by mild col- lision, represented more than 90%, and the cleaning loss, occurred during the threshing and cleaning process, represented 4%-8% of the total field loss. The un- harvesting loss accounted for approximately 1% of the total loss. The shattering loss is closely related to cultivar characteristics, planting density, production level and other agronomic factors. The cleaning loss is determined by properties of harvesting machines. The unharvesting loss depends on mechanical properties ad skills of workers or farmers who drive harvesting machines. [Conclusion] In order to reduce mechanical harvesting loss, the rapeseed production should be improved from the perspectives of agricultural machinery and agronomic measures.
基金Supported by Special Fund for China Agriculture Research SystemKey Application Technology and Innovation Subject of Shandong Province in 2013~~
文摘[Objective] The aim was to resolve the issue of sparsely planting (37 500-40 500 plants/hm2) of sweet potato in hilly areas. [Method] The starch-oriented Jishu No.21 and raw-eating oriented Jishu No.22 were studied to explore effects of planting density on yield and sink and source characteristics of sweet potato. [IRe- suit] Leaf area index of Jishu No.21 and Jishu No.22 were increasing upon planting density. Leaf area index of the same planting density showed a single-peak curve. Specifically, leaf area index grew fast during the 40th-80th d after planting, and reached the peak on the 80th d after planting, followed by decreasing. What's more, ventilation and sunshine transmission both declined upon planting density, as well as the number of leaf, the number of branch, the length of vine, dry and fresh weights of stem and leaf. When planting density exceeded 75 000 plants/hm2, the yield of sweet potato dropped dramatically. Besides, the optimal planting density tended to be volatile upon cultivars. For example, the range of 45 000-60 000 plants/hm2 is the optimal planting density of Jishu No.21 and the range of 60 000-75 000 plants/hm2 is the optimal planting density of Jishu No.22. [Conclusion] It can be concluded that rational planting densities would well coordinate sweet potato growth of ground parts and underground parts to get a high yield by providing a rational group structure. Considering the optimal planting density differs upon cultivars, it is necessary to take genotype, environment, soil fertility and planting density into consideration in determining planting density.
基金Supported by the Special Fund for Agricultural and Rural Research in the Public Interest of Sichuan Province(12ZC1930)~~
文摘[Objective] The experiment was conducted to explore the suitable planting density and nitrogen amount for summer maize in Sichuan Basin with the objective to provide technical reservation and scientific basis for high-yielding cultivation technique.[Method] A widely planted maize cultivar 'Chengdan 30' was used as experimental material to study the effects of planting density and nitrogen amount on the stalk agronomic traits,stalk lodging-resistance mechanical characters,stalk breaking percentage and yield of maize.Experiment was arranged in a two-factor split plot design with three replicates.The planting density was the main factor with three density gradients(4.5×10^4,6.0×10^4 and 7.5×10^4 plants/hm^2) and the nitrogen amount was the second factor with two different levels of nitrogen content(300 and 375 kg/hm^2).[Result] The stalk lodging-resistance and yield were affected by planting density significantly.The increase of planting density would result in an increase of internode length and decrease of internode diameter,dry matter weight of per unit stalk length,rind penetration strength and breaking resistance of 3rd and 4th basal internodes.When planting density increased from 6.0×10^4 plants/hm2 to 7.5×10^4 plants/hm^2,the stalk breaking percentage in the whole growing season increased by 17.17%,and the yield reduced by 17.58%.The interaction between planting density and nitrogen amount affected the stalk breaking percentage in the whole growing season and yield significantly.The treatment with planting density of 6.0×104 plants/hm^2 and nitrogen amount of 375 kg/hm^2 of pure N was an optimal combination,which may not only control the stalk breaking percentage of whole growing stage effectively,but also could obtain an optimum grain yield.[Conclusion] In Sichuan Basin,the appropriate planting density and nitrogen amount for summer maize were 6.0×10^4 plants/hm^2 and 375 kg/hm^2.
基金Supported by Key Agricultural R&D Program in Guizhou Province dur-ing the Eleventh Five-year Plan[NZ(2005)3001]~~
文摘[ Objective] This study was to understend the optimized combination of planting density, duration of disclosing plastic film and nitrogen fertilization under no-tillage cultivation. [ Method] Quadratic polynomial regression and saturated D-optimal design were employed to investigate the effects of planting density, duration of disclosing plastic film and nitrogen fertilization on the dynamics growth of rapeseed under no-tillage cultivation.[ Result] Within the experimental range, the growth dynamics of no-tillage cultivated rapeseed assumed a rise-fall tend. For the effects to the growth dynamics of no-tillage cultivated rapeseed, nitrogen application amount was higher than planting density and duration of disclosing plastic film. The interaction effect between planting density and duration of disclosing plastic film was higher than that between nitrogen application amount and planting density, and between nitrogen application amount and duration of disclosing plastic film. [ Conclusion] The optimized combination of these factors for dynamic growth of rapeseed under no-tillage cultivation was determined to be: planting density of per hectare 154 925 individuals, duration of disclosing plastic film of 110 d, nitrogen application amount of 315 kg/hm^2.
基金Supported by Project of Propagation of Improved Potatoes,Project of CropsLivestock and Poultry Breeding in 12th Five-Year Plan of Sichuan ProvinceTeam Project of Sichuan Potato Innovation under National Modern Industrial and Technological System~~
文摘[Objective] The experiment was conducted to study suitable date of seed- ing and density of spring potato at the stock breeding base in Ebian County at an elevation of 1 200 to 1 500 m. [Methods] Virus-free Potato "Chuanyu 13" was used as material to study the effects of date of seeding and density on growing period, germination rate, yield and water use efficiency of spring potato in the field. [Result] With the postponement of date of seeding, the days from sowing to germination shortened, while the germination rate, the number of tubers per plant, the number of middle and small tubers in a group, yield and water use efficiency all increased. Planting density had no effects on the days from sowing to germination and the ger- mination rate, while the number of tubers per ptant, the number of middle and small tubers in a group, yield and water use efficiency increased significantly along with the increasing planting density. [Conclusion] At an elevation of 1 200 m to 1 250 m in Ebian County, the suitable date of seeding for potato was from February 9 to March 1, and the suitable planting density was 12×10^4 plants per hm^2, however, in the optimum planting density has not been found so that it needs further research,
基金Supported by Earmarked Fund for China Agriculture Research System(CARS-11,sweetpotato)Jiangsu Science and Technology Support Program(BE2014315)+1 种基金Jiangsu Agricultural Science and Technology Independent Innovation Fund(CX(13)2032)Jiangsu Key Research and Development Program(modern agriculture)(BE2015313)~~
文摘The effects ol different genotypes and planting densities on main agronomic traits, storage root traits and yield were studied with 6 high-quality sweetpotato varieties as study objects by 2-factor completely random design. The results showed that there were significant differences in stem diameter, length of the longest vine and top/root (T/R) between different genotypes, T/R differed significantly under dif- ferent planting densities, and number of basal branches decreased with planting density increasing. Genotype and genotype x density showed significant or very sig- nificant effects on fresh root yield per plant, dry matter content and fresh root yield per hectare, fresh root yield per plant gradually decreased with planting density in- creasing, while fresh root yield per hectare increased with planting density increas- ing. Numbers of storage roots in different sizes of the 6 sweetpotato cultivars all exhibited an order of number of large-sized storage roots〈number of medium-sized storage roots〈small-sized storage root; and there were very significant differences in ratio of large-sized storage roots between different genotypes. The number of large- sized storage roots, ratio of large-sized storage roots and number of commercial storage roots deceased with planting density increasing, while there were no signifi- cant differences in number of medium-sized storage roots, number of small-sized storage roots, ratio of medium-sized storage roots and ratio of small-sized storage roots between different densities. Correlation analysis showed that there was signifi- cant positive correlation between number of basal branches and fresh root yield per plant; dry matter content in storage roots was in significant positive correlation with stem diameter, and in significant negative correlation with length of the longest vine; fresh root yield per hectare was in significant positive correlation with fresh root yield per plant, and in very significant negative correlation with dry matter content; and ratio of large-sized storage roots was in very significant positive correlation with number of large-sized storage root and fresh root yield per plant, and in very sig- nificant negative correlation with ratio of medium-sized storage roots and ratio of small-sized storage roots. This experiment showed that under the planting density of 7.5×104 plants/hm2, the 6 sweetpotato cultivars all reached the highest numbers of commercial storage roots and fresh root yields per hectare.
文摘[Objective] The aim was to explore high-yielding cultivation techniques for forage sweet sorghum. [Method[ The effects of planting density and row spacing on plant productivity and grass yield of forage sweet sorghum (Sorghum bicolor (L.) Moench) were compared using split-plot design and LSD method of IBMSPSSStatis- ticsv22. [Result]The planting density and row spacing had important influence on the plant productivity and yield of forage sweet sorghum. The optimum planting density- row spacing combination for plant productivity of forage sweet sorghum was A1B,, i. e., planting density of 75 000 plants/hm2 and row spacing of 40 cm, and the opti- mum combination for yield of forage sweet sorghum was A2B,, i.e., planting density of 225 000 plants/hm2 and row spacing of 40 cm. [Conclusion] This study will pro- vide theoretical basis and technical support for the production practice of forage sweet sorghum.
基金This work was supported by the National Natural Science Foundation of China(31871567)the National Key Research and Development Program of China(2017YFD0300202-2)the Young Scholar of Tang(2017).
文摘Excessive use of nitrogen fertilizer and high planting density reduce grain weight in wheat.However,the effects of high nitrogen and planting density on the filling of grain located in different positions of the wheat spikelet are unknown.A two-year field experiment was conducted to investigate this question and the underlying mechanisms with respect to hormone and carbohydrate activity.Both high nitrogen application and planting density significantly increased spike density,while reducing kernel number per spike and 1000-kernel weight.However,the effects of high nitrogen and high plant density on kernel number per spike and 1000-kernel weight were different.The inhibitory effect of high nitrogen application and high planting density on kernel number per spike was achieved mainly by a reduction in kernel number per spikelet in the top and bottom spikelets.However,the decrease in 1000-kernel weight was contributed mainly by the reduced weight of grain in the middle spikelets.The grain-filling rate of inferior grain in the middle spikelets was significantly decreased under high nitrogen input and high planting density conditions,particularly during the early and middle grain-filling periods,leading to the suppression of grain filling and consequent decrease in grain weight.This effect resulted mainly from inhibited sucrose transport to and starch accumulation in inferior grain in the middle spikelets via reduction of the abscisic acid/ethylene ratio.This mechanism may explain how high nitrogen application and high planting density inhibit the grain filling of inferior wheat grain.
基金the National Key Research and Development Program of China(2016YFD0300103,2017YFD0300603)the Innovation Engineering Plan Project of Jilin Province,China(CXGC2017ZY015)。
文摘To date,little attention has been paid to the effects of leaf source reduction on photosynthetic matter production,root function and post-silking N uptake characteristics at different planting densities.In a 2-year field experiment,Xianyu 335,a widely released hybrid in China,was planted at 60 000 plants ha^(–1 )(conventional planting density,CD) and 90 000 plants ha^(–1) (high planting density,HD),respectively.Until all the filaments protruded from the ear,at which point the plants were subjected to the removal of 1/2 (T1),1/3 (T2) and 1/4 (T3) each leaf length per plant,no leaf removal served as the control(CK).We evaluated the leaf source reduction on canopy photosynthetic matter production and N accumulation of different planting densities.Under CD,decreasing leaf source markedly decreased photosynthetic rate (P_(n)),effective quantum yield of photosystem II (ΦPSII) and the maximal efficiency of photosystem II photochemistry (F_(v)/F_(m)) at grain filling stage,reduced post-silking dry matter accumulation,harvest index (HI),and the yield.Compared with the CK,the 2-year average yields of T1,T2 and T3 treatments decreased by 35.4,23.8 and 8.3%,respectively.Meanwhile,decreasing leaf source reduced the root bleeding sap intensity,the content of soluble sugar in the bleeding sap,post-silking N uptake,and N accumulation in grain.The grain N accumulation in T1,T2 and T3 decreased by 26.7,16.5 and 12.8% compared with CK,respectively.Under HD,compared to other treatments,excising T3 markedly improved the leaf P_(n),ΦPSII and F_(v)/F_(m) at late-grain filling stage,increased the post-silking dry matter accumulation,HI and the grain yield.The yield of T3 was 9.2,35.7 and 20.1% higher than that of CK,T1 and T2 on average,respectively.The T3 treatment also increased the root bleeding sap intensity,the content of soluble sugar in the bleeding sap and post-silking N uptake and N accumulation in grain.Compared with CK,T1 and T2 treatments,the grain N accumulation in T3 increased by 13.1,40.9 and 25.2% on average,respectively.In addition,under the same source reduction treatment,the maize yield of HD was significantly higher than that of CD.Therefore,planting density should be increased in maize production for higher grain yield.Under HD,moderate decreasing leaf source improved photosynthetic performance and increased the post-silking dry matter accumulation and HI,and thus the grain yield.In addition,the improvement of photosynthetic performance improved the root function and promoted postsilking N uptake,which led to the increase of N accumulation in grain.
基金the research grants from the National Natural Science Foundation of China (51379208, 91425302, 51621061)the Government Public Research Funds for Projects of the Ministry of Agriculture (201503125)the Discipline Innovative Engineering Plan (111 Program, B14002)
文摘Field experiments were conducted from 2012 to 2015 in an arid region of Northwest China to investigate the effects of planting density on plant growth, yield, and water use efficiency(WUE) of maize for seed production. Five planting densities of 6.75, 8.25, 9.75, 11.25 and 12.75 plants/m^2 were conducted in 2012, and a planting density of 14.25 plants/m^2 was added from 2013 to 2015. Through comparison with the Aqua Crop yield model, a modified model was developed to estimate the biomass accumulation and yield under different planting densities using adjustment coefficient for normalized biomass water productivity and harvest index. It was found that the modified yield model had a better performance and could generate results with higher determination coefficient and lower error. The results indicated that higher planting density increased the leaf area index and biomass accumulation, but decreased the biomass accumulation per plant. The total yield increased rapidly as planting density increased to 11.25 plants/m^2, but only a slight increase was observed when the density was greater than 11.25 plants/m^2. The WUE also reached the maximum when planting density was 11.25 plants/m^2, which was the recommended planting density of maize for seed production in Northwest China.
基金This paper was supported by the National Natural Science Foundation of China (No.3970086) and Heilongjiang Province Foundation for Distinguished Youth Scholars (JC-02-11)
文摘C. acuminata seedlings cultivated in greenhouse were transplanted into the fields with 5 designed planting densities (11, 16, 25,44 and 100 plants·m^-2) in May of 2004 and were harvested in the middle of September of 2004. The seedling growth indexes including plant height and crown width, biomass allocation, camptothecin (CPT) content and CPT yield of different organs (young leaf, old leaf, stem,and root) were studied. For the 5 selected planting densities, the plant biomass, height, crown width, and total leaf area of C. acuminata seedlings all showed highest values at the planting density of 25 plants ·m^-2. CPT content in young leaves was higher than that in other organs of seedlings and presented an obvious change with the variation of planting densities and with the highest value at density of 100plants·m-2, while for other organs no significant variation in CPT content was found with change of planting density. The accumulation of CPT was enhanced significantly at the planting density of 25 plants·m^-2. It is concluded that for the purpose to get raw materials with more CPT from C. acuminata, the optimal planting density of C. acuminata seedlings should be designed as 25 plants·m^-2.
基金funded by the Professional (Agriculture) Researching Project for Public Benefit of Ministry of Agriculture,China (3-5)High-Yielding Promotion Project of Ministry of Agriculture,Chinathe National Industrial System Program of Modern Agriculture,China
文摘Cotton yield per unit ground area has stagnated for a dozen years in Hubei Province, China, although a series of new high- yielding varieties have been commercialized. A multi-location investigation was carried out in 2008 and 2009 in 13 counties to determine if increased planting population density (PPD) would break the stagnant yield. The results showed that significant differences among the fields existed in theoretical yield, PPD, and bolls per square meter (BPM). The lowest yield of 1 641.1 kg ha-I was resulted from the lowest PPD of 1.7 plants m-2 and the lowest BPM of 71.8 bolls m-2, while the highest yield of 2 779.7 kg ha-~ was resulted from the highest PPD of 2.5 plants m-2, and the highest BPM of 129.4 bolls m-z. Plant mapping revealed that boll retention rate (BRR) was maintained over 30 or 40% for the first 17-18 fruiting branches (FBs) and decreased dramatically thereafter, rotten boll rate (RBR) decreased, but open boll rate (OBR) rose first and dropped later with rising FB from the bottom to the top. But BRR, RBR, and OBR were all dropped with the fruiting positions (FPs) extending outwards. The optimum range of plant density would be 2-3 plants m-2 and the proper individual plant structure would be 16-19 FBs with 5-7 FPs for cotton production in Hubei Province.
基金financially supported by the National Key Research and Development Program of China(2017YFD0300106,2018YFD0301103,and 2016YFD0300108)the National Key Technologies R&D Program of China during the 12th Five-Year Plan period(2013BAD07B12)the National Natural Science Foundation of China(31601263)。
文摘To address the relationships between the amount of nitrogen fertilizer application and the yield of double cropping rice systems,we investigated the effects of a cultivation pattern of strong seedlings with increased planting density and reduced nitrogen application(SDN)on the morphological and physiological characteristics of double cropping rice.Our results indicated that the effects of SDN on the morphological characteristics of the single plant roots of double cropping rice were not significant,but the morphological characteristics of the population roots were largely different.Specifically,SDN significantly increased the morphological indexes of the root population such as root fresh weight,root volume,root number,root length and root dry weight.The effects of SDN on the total root absorption areas and root active absorption areas of the single plants were non-significant,but it dramatically enhanced the total root absorption areas and root active absorption areas of the plant population during the tillering,heading and mature stages.In addition,SDN significantly increased the root bleeding intensity and elevated the soluble sugar and free amino acid contents of root bleeding sap.Compared to the traditional cultivation pattern(CK),SDN significantly increased root bleeding intensity at the heading stage by 4.37 and 8.90% for early and late rice,respectively.Meanwhile,SDN profoundly enhanced the soluble sugar contents of root bleeding sap by 12.85 and 10.41% for early and late rice,respectively.In addition,SDN also significantly enhanced free amino acid content of root bleeding sap by 43.25% for early rice and by 37.50% for late rice systems compared to CK.Furthermore,SDN increased the actual yield of double cropping rice mainly due to the higher effective panicle number and the larger seedsetting rate.The actual yields of early rice under SDN were higher than CK by 9.37 and 5.98% in 2016 and 2017,and the actual yields of late rice under SDN were higher than CK by 0.20 and 1.41% in 2016 and 2017,respectively.Correlation analysis indicated that the significant positive correlations were observed between the majority of the root indexes and the actual yield across the four different growth stages.
文摘With the change of cropping system in the middle reaches of the Yangtze River,the planting area of autumn maize is gradually increasing.However,the cultivation techniques are still under improvement for higher yield and nitrogen efficiency of autumn maize.Increase in planting density with reduced nitrogen fertilizer application is one of the important paths to achieve high yield and high nitrogen utilization efficiency.Meanwhile,the effect needs to be verified for autumn maize.The semi-compact autumn maize variety Qinyu 58 was planted under different planting densities and nitrogen fertilizer amounts with the split plot design.Different nitrogen application rates were arranged in the main plots,including the conventional nitrogen application(N300,300 kg/hm^2),30%reduction from the conventional treatment(N210,210 kg/hm^2)and no nitrogen application(N0).Different planting densities were arranged in the sub-split plots,including the conventional planting density(D60,60000 plants/hm2),medium density(D78,78000 plants/hm^2)and high density(D93,93000 plants/hm2).The effects of nitrogen fertilizer,planting density and their interaction effects on canopy structure,dry matter accumulation,yield and nitrogen use efficiency of autumn maize were studied.The nitrogen application rate and planting density had obvious interaction effects on the yield formation of autumn maize.Compared with the conventional cultivation(N300D60),increasing the planting density with 30%reduction in nitrogen application(N210)can obviously increase the canopy light interception rate,LAI,dry matter accumulation and yield.However,there was no significant change in canopy light interception rate,LAI,dry matter accumulation,grain weight and yield between D93 and D78.Compared with N300D60,nitrogen translocation efficiency and nitrogen contribution proportion to grain nitrogen did not change significantly in autumn maize grown under N210 and D78 treatments,whereas nitrogen partial productivity,nitrogen agronomic efficiency and recovery and utilization efficiency of nitrogen fertilizer increased significantly.Moreover,high density(D93)planting at N210 plots significantly improved nitrogen transport efficiency and utilization efficiency in autumn maize.Therefore,the suitable planting density of the autumn maize variety Qinyu 58 in Hubei Province is recommended a value of 78000 plants/hm^2,with the nitrogen application rate of 210 kg/hm2,which can achieve the target of higher yield by increasing density and reducing nitrogen.
基金supported by projects funded by the China Postdoctoral Science Foundation(2019M663837 and 2021M701521)the National High-Tech Research and Development Programs of China(2013AA102902)the special fund for Agro-scientific Research in the Public Interest,China(201303104)。
文摘Lodging in maize leads to yield losses worldwide.In this study,we determined the effects of traditional and optimized nitrogen management strategies on culm morphological characteristics,culm mechanical strength,lignin content,root growth,lodging percentage and production in maize at a high plant density.We compared a traditional nitrogen(N)application rate of 300 kg ha–1(R)and an optimized N application rate of 225 kg ha^(–1)(O)under four N application modes:50%of N applied at sowing and 50%at the 10th-leaf stage(N1);100%of N applied at sowing(N2);40%of N applied at sowing,40%at the 10th-leaf stage and 20%at tasseling stage(N3);and 30%of N applied at sowing,30%at the 10th-leaf stage,20%at the tasseling stage,and 20%at the silking stage(N4).The optimized N rate(225 kg ha^(–1))significantly reduced internode lengths,plant height,ear height,center of gravity height and lodging percentage.The optimized N rate significantly increased internode diameters,filling degrees,culm mechanical strength,root growth and lignin content.The application of N in four split doses(N4)significantly improved culm morphological characteristics,culm mechanical strength,lignin content,and root growth,while it reduced internode lengths,plant height,ear height,center of gravity height and lodging percentage.Internode diameters,filling degrees,culm mechanical strength,lignin content,number and diameter of brace roots,root volume,root dry weight,bleeding safe and grain yield were significantly negatively correlated with plant height,ear height,center of gravity height,internode lengths and lodging percentage.In conclusion,treatment ON4 significantly reduced the lodging percentage by improving the culm morphological characteristics,culm mechanical strength,lignin content,and root growth,so it improved the production of the maize crop at a high plant density.
基金The work was supported by the National Key Research and Development Program of China(Grant Number 2016YFD0600402).
文摘Poplar is raw material for various panel, paper and fiber products. The 12 sample trees of clone Nanlin-895 from four spacings were destructively harvested after thirteen growing seasons to assess the influence of spacing on radial growth and wood properties. Spacing significantly affected tree-ring width and wood basic density (p < 0.05) but not fiber traits. The highest diameter and wood basic density at breast height (1.3 m) was in 6 m × 6 m and 3 m × 8 m spacings, respectively. However, no significant differences in tree-ring width, wood basic density and fiber traits were observed among the four sampling directions in discs taken at 1.3 m for each spacing. Growth rings from the pith and tree heights had significant effects on wood basic density and fiber anatomical characteristics, highlighting obvious temporal-spatial variations. Pearson correlation analysis showed a significantly negative relationship of tree-ring width to wood basic density, fiber length and fiber width, but a significantly positive relationship to hemicellulose. There was no relationship with cellulose and lignin contents. Based on a comprehensive assessment by the TOPSIS method, the 6 m × 6 m spacing is recommended for producing wood fiber at similar sites in the future.
基金supported by the National Natural Science Foundation of China(grant no.31960385)the Natural Science Foundation of Jiangxi,China(grant no.20212BAB215009)。
文摘Background Mepiquat chloride(MC)application and plant population density(PPD)increasing are required for modern cotton production.However,their interactive effects on leaf physiology and carbohydrate metabolism remain obscure.This study aimed to examine whether and how MC and PPD affect the leaf morpho-physiological characteristics,and thus final cotton yield.PPD of three levels(D1:2.25 plants·m^(-2),D2:4.5 plants·m^(-2),and D3:6.75 plants·m^(-2))and MC dosage of two levels(MC0:0 g·ha^(-2),MC1:82.5 g·ha^(-2))were combined to create six treatments.The dynamics of nonstructual carbohydrate concentration,carbon metabolism-related enzyme activity,and photosynthetic attributes in cotton leaves were examined during reproductive growth in 2019 and 2020.Results Among six treatments,the high PPD of 6.75 plants·m^(-2)combined with MC application(MC1D3)exhibited the greatest seed cotton yield and biological yield.The sucrose,hexose,starch,and total nonstructural carbohydrate(TNC)concentrations peaked at the first flowering(FF)stage and then declined to a minimum at the first boll opening(FBO)stage.Compared with other treatments,MC1D3 improved starch and TNC concentration by 5.4%~88.4%,7.8%~52.0% in 2019,and by 14.6%~55.9%,13.5%~39.7% in 2020 at the FF stage,respectively.Additionally,MC1D3 produced higher transformation rates of starch and TNC from the FF to FBO stages,indicating greater carbon production and utilization efficiency.MC1D3 displayed the maximal specific leaf weight(SLW)at the FBO stage,and the highest chlorophyll a(Chl a),Chl b,and Chl a+b concentration at the mid-late growth phase in both years.The Rubisco activity with MC1D3 was 2.6%~53.2% higher at the flowering and boll setting stages in both years,and 2.4%~52.7% higher at the FBO stage in 2020 than those in other treatments.These results provided a explanation of higher leaf senescence-resistant ability in MC1D3.Conclusion Increasing PPD coupled with MC application improves cotton yield by enhancing leaf carbohydrate production and utilization efficiency and delaying leaf senescence.