A class of Beddington-DeAngelis' type predator-prey dynamic system with prey and predator both having linear density restriction is considered. By using the qualitative methods of ODE, the existence and uniqueness of...A class of Beddington-DeAngelis' type predator-prey dynamic system with prey and predator both having linear density restriction is considered. By using the qualitative methods of ODE, the existence and uniqueness of positive equilibrium and its global asymptotic stability are analyzed. The direct criterions for local stability of positive equilibrium and existence of limit cycle are also established when inference parameter of predator is small.展开更多
Consider a class of Ivlev's type predator-prey dynamic systems with prey and predator both having linear density restricts. By using the qualitative methods of ODE, the global stability of positive equilibrium and ex...Consider a class of Ivlev's type predator-prey dynamic systems with prey and predator both having linear density restricts. By using the qualitative methods of ODE, the global stability of positive equilibrium and existence and uniqueness of non-small amplitude stable limit cycle are obtained. Especially under certain conditions, it shows that existence and uniqueness of non-small amplitude stable limit cycle is equivalent to the local un-stability of positive equilibrium and the local stability of positive equilibrium implies its global stability. That is to say, the global dynamic of the system is entirely determined by the local stability of the positive equilibrium.展开更多
基金Supported by the NNSF of China( 10171044) the Foundation for University Key Teachers of the Ministry of Education of China .
文摘A class of Beddington-DeAngelis' type predator-prey dynamic system with prey and predator both having linear density restriction is considered. By using the qualitative methods of ODE, the existence and uniqueness of positive equilibrium and its global asymptotic stability are analyzed. The direct criterions for local stability of positive equilibrium and existence of limit cycle are also established when inference parameter of predator is small.
文摘Consider a class of Ivlev's type predator-prey dynamic systems with prey and predator both having linear density restricts. By using the qualitative methods of ODE, the global stability of positive equilibrium and existence and uniqueness of non-small amplitude stable limit cycle are obtained. Especially under certain conditions, it shows that existence and uniqueness of non-small amplitude stable limit cycle is equivalent to the local un-stability of positive equilibrium and the local stability of positive equilibrium implies its global stability. That is to say, the global dynamic of the system is entirely determined by the local stability of the positive equilibrium.