Objective: To explore the cleaving and inhibitory activity of hepatitis C virus ( HCV) -specific deoxyri-bozymes (DRz) at both molecular and transgeneic cellular levels. Methods: According to the secondary structure o...Objective: To explore the cleaving and inhibitory activity of hepatitis C virus ( HCV) -specific deoxyri-bozymes (DRz) at both molecular and transgeneic cellular levels. Methods: According to the secondary structure of HCV 5'-noncoding region (5'-NCR) and the sites characterized with 5'…Y ↓ R…3'(Y = A/G,R = U/C) , HCV-spe-cific naive deoxyribozymes were designed and named DRz-232, DRz-127, DRz-84, DRz1, and the phosphorothioate deoxyribozymes (PSDRz) and mutated phosphorothioate deoxyribozymes (MPSDRz) were also designed. HCV RNA 5'-NCR was transcribed in vitro from linearized plasmid pHCV-neo and radiolabelled at its 5'-end. DRz, PSDRz or MPSDRz was respectively mixed with the substrate RNA and incubated under appropriate conditions, the cleaved products were displayed by 8% denaturated polyacrylamide gel electrophoresis (PAGE) and autoradiography, and the optical density of each band was measured to calculate cleavage rates. After that, every kind of DRz was added respectively to the cultured transgeneic HepG2 cells containing luciferase gene controlled by HCV 5'-NCR. The cells were lysed at intended time points and the activity of luciferase was measured with chemiluminescence method for calculating inhibition rates. Results: After incubated for 90 min in vitro, the cleavage rates of DRz-127, PSDRz-127, DRz1 and PS-DRz1 reached 32.6% , 30. 8% , 24. 3% and 21. 5% , respectively. No cleavage product was observed in any MPSDRz. DRz-127, PSDRz-127, DRz1 and PSDRzl had an inhibitory rate of 53. 2% , 50. 6% , 44. 7% and 43. 3% respectively in transgeneic HepG2 cells in the first 24 h when the final dose of the DRz was 0. 5μmol/L, higher than that of the corresponding MPSDRz. There was no significant difference between the inhibitory effect of each DRz and its PSDRz in HepG2 cells, but the inhibitory rate of DRz decreased more rapidly than that of the latter with the elapse of time. The results from transfection groups were significantly better than those of non-transfection groups. Conclusion: Rationally-designed HCV-specific deoxyribozymes are able to cleave target RNA at molecular level in vitro, and efficiently inhibit the expression of luciferase gene controlled by HCV 5'-NCR in transgeneic cells. Appropriate PSDRz may be more stable, and thus more suitable than the naive DRz in the application to cells. Introduction of the deoxyribozymes with transfection is more efficient than with direct delivering ways.展开更多
To investigate the effect of two deoxyribozymes targeting period1(per1)mRNA in vitro for exploring a novel gene therapy approach about circadian rhythm diseases,the specific deoxyribozymes targeting per1 were designed...To investigate the effect of two deoxyribozymes targeting period1(per1)mRNA in vitro for exploring a novel gene therapy approach about circadian rhythm diseases,the specific deoxyribozymes targeting per1 were designed and synthesized chemically following MFold analysis according to its mRNA secondary structure.per1 RNA fragments were prepared by in vitro transcription of pcDNA3.1(+)-per1_(164:256).The cleavage reactions containing deoxyribozymes and per1 RNA fragments were performed under certain conditions.With the transfection tech-nique mediated by LipofectAMINE^(TM),pcDNA3-per1 and DRz164 or DRz256 were introduced into NIH3T3 cells.The effects of deoxyribozymes on per1 were studied by reverse tran-script-polymerase chain reaction(RT-PCR)and flow cytometry(FCM).When deoxyribozymes and RNA transcripts were incubated under the adopted conditions at 37℃for 2 h,about 63%of per1_(164:256)RNA transcripts were cleaved by DRz164 and about 50.5%by DRz256.After co-transfecting pcDNA3-per1 with DRz164 or DRz256,the expression of per1 mRNA was de-creased,as indicated by RT-PCR semi-quantity analysis.FCM analysis showed that Per1 protein was inhibited.Both DRz164 and DRz256 targeting per1 have the specific cleavage activity to-ward per1 mRNA in vitro and can highly block the expression of per1 gene in cellular milieu.展开更多
<span style="font-family:""><span style="font-family:Verdana;">For just about 30 years, researchers have considered the likelihood to utilize </span><span style="font...<span style="font-family:""><span style="font-family:Verdana;">For just about 30 years, researchers have considered the likelihood to utilize </span><span style="font-family:Verdana;">nucleic acids as antiviral therapeutics. In principle, small single-stranded</span><span style="font-family:Verdana;"> nuc</span><span style="font-family:Verdana;">leotide sequence (oligonucleotide) could hybridize to a particular gene or</span><span style="font-family:Verdana;"> mes</span><span style="font-family:Verdana;">senger RNA and diminish transcription or translation, respectively, in this</span><span style="font-family:Verdana;"> manner decreasing the amount of protein that is synthesized. Until now, an incredible number of antisense oligonucleotides, double-stranded oligonucleotides, aptamers, ribozymes, deoxyribozymes, interfering RNAs, chimeric RNA</span></span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;">DNA molecules, antibody genes has been created artificially and ap</span><span style="font-family:Verdana;">plied effectively for comprehension and manipulating biological processe</span><span style="font-family:Verdana;">s and in clinical preliminaries to treat a variety of diseases. Their versatility and potency make them similarly fit candidates for fighting viral infections. However, troubles with their efficiency, off-target effects, toxicity, delivery, and stability halted the development of nucleic acid-based therapeutics that can be utilized in the clinic. The potential for nucleic acid therapeutic agents is significant and is quite recently beginning to be realized. In this review, we have summarized some of the recent advancements made in the area of nucleic acid based therapeutics and focused on the methods of their delivery and associated challenges.展开更多
文摘Objective: To explore the cleaving and inhibitory activity of hepatitis C virus ( HCV) -specific deoxyri-bozymes (DRz) at both molecular and transgeneic cellular levels. Methods: According to the secondary structure of HCV 5'-noncoding region (5'-NCR) and the sites characterized with 5'…Y ↓ R…3'(Y = A/G,R = U/C) , HCV-spe-cific naive deoxyribozymes were designed and named DRz-232, DRz-127, DRz-84, DRz1, and the phosphorothioate deoxyribozymes (PSDRz) and mutated phosphorothioate deoxyribozymes (MPSDRz) were also designed. HCV RNA 5'-NCR was transcribed in vitro from linearized plasmid pHCV-neo and radiolabelled at its 5'-end. DRz, PSDRz or MPSDRz was respectively mixed with the substrate RNA and incubated under appropriate conditions, the cleaved products were displayed by 8% denaturated polyacrylamide gel electrophoresis (PAGE) and autoradiography, and the optical density of each band was measured to calculate cleavage rates. After that, every kind of DRz was added respectively to the cultured transgeneic HepG2 cells containing luciferase gene controlled by HCV 5'-NCR. The cells were lysed at intended time points and the activity of luciferase was measured with chemiluminescence method for calculating inhibition rates. Results: After incubated for 90 min in vitro, the cleavage rates of DRz-127, PSDRz-127, DRz1 and PS-DRz1 reached 32.6% , 30. 8% , 24. 3% and 21. 5% , respectively. No cleavage product was observed in any MPSDRz. DRz-127, PSDRz-127, DRz1 and PSDRzl had an inhibitory rate of 53. 2% , 50. 6% , 44. 7% and 43. 3% respectively in transgeneic HepG2 cells in the first 24 h when the final dose of the DRz was 0. 5μmol/L, higher than that of the corresponding MPSDRz. There was no significant difference between the inhibitory effect of each DRz and its PSDRz in HepG2 cells, but the inhibitory rate of DRz decreased more rapidly than that of the latter with the elapse of time. The results from transfection groups were significantly better than those of non-transfection groups. Conclusion: Rationally-designed HCV-specific deoxyribozymes are able to cleave target RNA at molecular level in vitro, and efficiently inhibit the expression of luciferase gene controlled by HCV 5'-NCR in transgeneic cells. Appropriate PSDRz may be more stable, and thus more suitable than the naive DRz in the application to cells. Introduction of the deoxyribozymes with transfection is more efficient than with direct delivering ways.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.3007027&39970275)
文摘To investigate the effect of two deoxyribozymes targeting period1(per1)mRNA in vitro for exploring a novel gene therapy approach about circadian rhythm diseases,the specific deoxyribozymes targeting per1 were designed and synthesized chemically following MFold analysis according to its mRNA secondary structure.per1 RNA fragments were prepared by in vitro transcription of pcDNA3.1(+)-per1_(164:256).The cleavage reactions containing deoxyribozymes and per1 RNA fragments were performed under certain conditions.With the transfection tech-nique mediated by LipofectAMINE^(TM),pcDNA3-per1 and DRz164 or DRz256 were introduced into NIH3T3 cells.The effects of deoxyribozymes on per1 were studied by reverse tran-script-polymerase chain reaction(RT-PCR)and flow cytometry(FCM).When deoxyribozymes and RNA transcripts were incubated under the adopted conditions at 37℃for 2 h,about 63%of per1_(164:256)RNA transcripts were cleaved by DRz164 and about 50.5%by DRz256.After co-transfecting pcDNA3-per1 with DRz164 or DRz256,the expression of per1 mRNA was de-creased,as indicated by RT-PCR semi-quantity analysis.FCM analysis showed that Per1 protein was inhibited.Both DRz164 and DRz256 targeting per1 have the specific cleavage activity to-ward per1 mRNA in vitro and can highly block the expression of per1 gene in cellular milieu.
文摘<span style="font-family:""><span style="font-family:Verdana;">For just about 30 years, researchers have considered the likelihood to utilize </span><span style="font-family:Verdana;">nucleic acids as antiviral therapeutics. In principle, small single-stranded</span><span style="font-family:Verdana;"> nuc</span><span style="font-family:Verdana;">leotide sequence (oligonucleotide) could hybridize to a particular gene or</span><span style="font-family:Verdana;"> mes</span><span style="font-family:Verdana;">senger RNA and diminish transcription or translation, respectively, in this</span><span style="font-family:Verdana;"> manner decreasing the amount of protein that is synthesized. Until now, an incredible number of antisense oligonucleotides, double-stranded oligonucleotides, aptamers, ribozymes, deoxyribozymes, interfering RNAs, chimeric RNA</span></span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;">DNA molecules, antibody genes has been created artificially and ap</span><span style="font-family:Verdana;">plied effectively for comprehension and manipulating biological processe</span><span style="font-family:Verdana;">s and in clinical preliminaries to treat a variety of diseases. Their versatility and potency make them similarly fit candidates for fighting viral infections. However, troubles with their efficiency, off-target effects, toxicity, delivery, and stability halted the development of nucleic acid-based therapeutics that can be utilized in the clinic. The potential for nucleic acid therapeutic agents is significant and is quite recently beginning to be realized. In this review, we have summarized some of the recent advancements made in the area of nucleic acid based therapeutics and focused on the methods of their delivery and associated challenges.