The investigation of electrical properties in alexandrite (BeAl<sub>2</sub>O<sub>4</sub>:Cr<sup>3+</sup>) in synthetic and natural forms is presented in this paper. Alexandrite is a...The investigation of electrical properties in alexandrite (BeAl<sub>2</sub>O<sub>4</sub>:Cr<sup>3+</sup>) in synthetic and natural forms is presented in this paper. Alexandrite is a rare and precious mineral that changes color according to the light incident on it. In the synthetic form, it is used technologically as an active laser medium. The electrical characterization was obtained using the Thermally Stimulated Depolarization Current (TSDC) technique, an interesting tool to study the behavior of impurities in insulators. Alexandrite presented the electric dipole relaxation phenomenon, both in natural and in synthetic samples. It was possible to observe TSDC bands for the synthetic sample at around 170 K, and at around 175 K for the natural sample. Besides, photo-induced TSDC measurements were performed through the excitement of the samples by using a continuous wave argon laser. In addition, photoluminescence measurements were performed to verify in advance whether the laser light would be absorbed by the sample, and in order to complement the photo-induced TSDC measurements analysis. The results of photo-induced TSDC experiments have contributed to the understanding of the TSDC bands behavior: the results obtained with the technique suggest that there is an effective participation of Cr<sup>3+</sup> ions in the formation of TSDC bands because they were more intense when the sample was exposed to the argon laser beam.展开更多
When the contacts of a medium-voltage DC air circuit breaker(DCCB) are separated, the energy distribution of the arc is determined by the formation process of the near-electrode sheath. Therefore, the voltage drop thr...When the contacts of a medium-voltage DC air circuit breaker(DCCB) are separated, the energy distribution of the arc is determined by the formation process of the near-electrode sheath. Therefore, the voltage drop through the near-electrode sheath is an important means to build up the arc voltage, which directly determines the current-limiting performance of the DCCB. A numerical model to describe the near-electrode sheath formation process can provide insight into the physical mechanism of the arc formation, and thus provide a method for arc energy regulation. In this work, we establish a two-dimensional axisymmetric time-varying model of a medium-voltage DCCB arc when interrupted by high current based on a fluid-chemical model involving 16 kinds of species and 46 collision reactions. The transient distributions of electron number density, positive and negative ion number density, net space charge density, axial electric field, axial potential between electrodes, and near-cathode sheath are obtained from the numerical model. The computational results show that the electron density in the arc column increases, then decreases, and then stabilizes during the near-cathode sheath formation process, and the arc column's diameter gradually becomes wider. The 11.14 V–12.33 V drops along the17 μm space charge layer away from the cathode(65.5 k V/m–72.5 k V/m) when the current varies from 20 k A–80 k A.The homogeneous external magnetic field has little effect on the distribution of particles in the near-cathode sheath core,but the electron number density at the near-cathode sheath periphery can increase as the magnetic field increases and the homogeneous external magnetic field will lead to arc diffusion. The validity of the numerical model can be proven by comparison with the experiment.展开更多
The novel method to analyze metallic structure corrosion status was proposed in the presence of stray current in DC mass transit systems. Firstly, the characteristic parameter and the influence parameters for the corr...The novel method to analyze metallic structure corrosion status was proposed in the presence of stray current in DC mass transit systems. Firstly, the characteristic parameter and the influence parameters for the corrosion status were determined. Secondly, an experimental system was established for simulating the corrosion process within the stray current interference. Then, a predictive model for the corrosion status was built, using a support vector machine(SVM) method and experimental data. The data were divided into two sets, including training set and testing set. The training set was used to generate the SVM model and the testing set was used to evaluate the predictive performance of the SVM model. The results show that the relationship between the characteristic parameter and the influence parameters is nonlinear and the SVM model is suitable for predicting the corrosion status.展开更多
DC magnetic biasing problem,caused by the DC grounding electrode, threatened the safe operation of AC power grid. In this paper, the characteristics of the soil stratification near DC grounding electrode was researche...DC magnetic biasing problem,caused by the DC grounding electrode, threatened the safe operation of AC power grid. In this paper, the characteristics of the soil stratification near DC grounding electrode was researched. The AC-DC interconnected large-scale system model under the monopole operation mode was established. The earth surface potential and DC current distribution in various stations under the different surface thickness was calculated. Some useful conclusions are drawn from the analyzed results.展开更多
This paper focus on the Modeling and Calculation of DC current distribution in AC power grid induced under HVDC Ground-Return-Mode. Applying complex image method and boundary element method, a new field-circuit coupli...This paper focus on the Modeling and Calculation of DC current distribution in AC power grid induced under HVDC Ground-Return-Mode. Applying complex image method and boundary element method, a new field-circuit coupling model was set up. Based on the calculation result with complex image method, this paper derived the modification factor for induced earth potential from practical measurement, which increased the accuracy of calculation. The modification method is helpful for evaluation on the effect of means used for blocking the dc-bias current in transformer neutral and also useful for the forecast of the DC current distribution when the power grid is in different line connection mode. The DC distribution character in Guangdong power grid is shown and suggestion is proposed that the mitigation of dc-bias should start from those substations whose earth-potential is highest.展开更多
The superconducting tokamak HT-7U [1] has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW /2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the...The superconducting tokamak HT-7U [1] has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW /2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the most efficient non-induction device can heat the plasma and drive the plasma current has been efficiently in operation 'owl and a particular design of the 2.8 MW/-35 kV high-voltage DC power supply has been already completed and will apply to the klystron of LHCD on HT-7 and the future HT-7U, and the project of the power supply has been examined and approved professionally by an authorized group of high-level specialist in the institute of Plasma Physics. The detailed design of the power supply and the simulation results are referred in the paper.展开更多
Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC g...Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC grid.In order to suppress the rising speed of the fault current and reduce the current interruption requirements of the main breaker(MB),a fault current limiting hybrid DC circuit breaker(FCL-HCB)has been proposed in this paper,and it has the capability of bidirectional fault current limiting and fault current interruption.After the occurrence of the overcurrent in the HVDC grid,the current limiting circuit(CLC)of FCL-HCB is put into operation immediately,and whether the protected line is cut off or resumed to normal operation is decided according to the fault detection result.Compared with the traditional hybrid DC circuit breaker(HCB),the required number of semiconductor switches and the peak value of fault current after fault occurs are greatly reduced by adopting the proposed device.Extensive simulations also verify the effectiveness of the proposed FCL-HCB.展开更多
In order to guarantee quality during mass serial production of motors, a convenient approach on how to detect and diagnose the faults of a permanent-magnetic DC motor based on armature current analysis and BP neural n...In order to guarantee quality during mass serial production of motors, a convenient approach on how to detect and diagnose the faults of a permanent-magnetic DC motor based on armature current analysis and BP neural networks was presented in this paper. The fault feature vector was directly established by analyzing the armature current. Fault features were extracted from the current using various signal processing methods including Fourier analysis, wavelet analysis and statistical methods. Then an advanced BP neural network was used to finish decision-making and separate fault patterns. Finally, the accuracy of the method in this paper was verified by analyzing the mechanism of faults theoretically. The consistency between the experimental results and the theoretical analysis shows that four kinds of representative faults of low power permanent-magnetic DC motors can be diagnosed conveniently by this method. These four faults are brush fray, open circuit of components, open weld of components and short circuit between armature coils. This method needs fewer hardware instruments than the conventional method and whole procedures can be accomplished by several software packages developed in this paper.展开更多
Recently years,UHVDC transmission system is paid more attention to in the field of China's power system.It takes key part in the China electrical power development stratagem.But,many problems are caused by UHVDC s...Recently years,UHVDC transmission system is paid more attention to in the field of China's power system.It takes key part in the China electrical power development stratagem.But,many problems are caused by UHVDC system,such as DC bias,corrosion of metal underground and so on.DC bias is harm to the transformers nearby UHVDC grounding polar.In this paper,the influences of DC grounding current on transformer are introduced and some suggestions of DC bias solution were provided.And,the relationship between UHVDC Grounding Current and grounding Resistance of Substation was analyzed.Firstly,two-part network circuit was used to equivalent the grounding circuit.Then,an analysis of rules was done between DC bias current and grounding resistance.Finally,the conclusion is given that DC bias current rises fast as DC grounding resistance or AC grounding resistance rises.It drops when resistance of AC transmission line or interaction resistance between DC grounding system and AC grounding system rises.Decreasing AC grounding resistance and DC grounding resistance is important to restrain DC bias current.Increasing resistance of AC transmission line such as adding resistance into transformer neutral-point grounding is a useful way to limit DC bias current.展开更多
Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events a...Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events are significantly slower than the excitatory postsynaptic currents.Parameters of slow inward currents are determined by seve ral factors including the mechanisms of astrocytic activation and glutamate release,as well as the diffusion pathways from the release site towards the extra synaptic recepto rs.Astrocytes are stimulated by neuronal network activity,which in turn excite neurons,forming an astrocyte-neuron feedback loop.Mostly as a consequence of brain edema,astrocytic swelling can also induce slow inward currents under pathological conditions.There is a growing body of evidence on the roles of slow inward currents on a single neuron or local network level.These events often occur in synchro ny on neurons located in the same astrocytic domain.Besides synchronization of neuronal excitability,slow inward currents also set synaptic strength via eliciting timing-dependent synaptic plasticity.In addition,slow inward currents are also subject to non-synaptic plasticity triggered by long-la sting stimulation of the excitatory inputs.Of note,there might be important regionspecific differences in the roles and actions triggering slow inward currents.In greater networks,the pathophysiological roles of slow inward currents can be better understood than physiological ones.Slow inward currents are identified in the pathophysiological background of autism,as slow inward currents drive early hypersynchrony of the neural networks.Slow inward currents are significant contributors to paroxysmal depolarizational shifts/interictal spikes.These events are related to epilepsy,but also found in Alzheimer's disease,Parkinson's disease,and stroke,leading to the decline of cognitive functions.Events with features overlapping with slow inward currents(excitatory,N-methyl-Daspartate-receptor mediated currents with astrocytic contribution) as ischemic currents and spreading depolarization also have a well-known pathophysiological role in worsening consequences of stroke,traumatic brain injury,or epilepsy.One might assume that slow inward currents occurring with low frequency under physiological conditions might contribute to synaptic plasticity and memory formation.However,to state this,more experimental evidence from greater neuronal networks or the level of the individual is needed.In this review,I aimed to summarize findings on slow inward currents and to speculate on the potential functions of it.展开更多
文摘The investigation of electrical properties in alexandrite (BeAl<sub>2</sub>O<sub>4</sub>:Cr<sup>3+</sup>) in synthetic and natural forms is presented in this paper. Alexandrite is a rare and precious mineral that changes color according to the light incident on it. In the synthetic form, it is used technologically as an active laser medium. The electrical characterization was obtained using the Thermally Stimulated Depolarization Current (TSDC) technique, an interesting tool to study the behavior of impurities in insulators. Alexandrite presented the electric dipole relaxation phenomenon, both in natural and in synthetic samples. It was possible to observe TSDC bands for the synthetic sample at around 170 K, and at around 175 K for the natural sample. Besides, photo-induced TSDC measurements were performed through the excitement of the samples by using a continuous wave argon laser. In addition, photoluminescence measurements were performed to verify in advance whether the laser light would be absorbed by the sample, and in order to complement the photo-induced TSDC measurements analysis. The results of photo-induced TSDC experiments have contributed to the understanding of the TSDC bands behavior: the results obtained with the technique suggest that there is an effective participation of Cr<sup>3+</sup> ions in the formation of TSDC bands because they were more intense when the sample was exposed to the argon laser beam.
基金Project supported by the National Natural Science Foundation of China (Grant No.51977132)Key Special Science and Technology Project of Liaoning Province (Grant No.2020JH1/10100012)General Program of the Education Department of Liaoning Province (Grant No.LJKZ0126)。
文摘When the contacts of a medium-voltage DC air circuit breaker(DCCB) are separated, the energy distribution of the arc is determined by the formation process of the near-electrode sheath. Therefore, the voltage drop through the near-electrode sheath is an important means to build up the arc voltage, which directly determines the current-limiting performance of the DCCB. A numerical model to describe the near-electrode sheath formation process can provide insight into the physical mechanism of the arc formation, and thus provide a method for arc energy regulation. In this work, we establish a two-dimensional axisymmetric time-varying model of a medium-voltage DCCB arc when interrupted by high current based on a fluid-chemical model involving 16 kinds of species and 46 collision reactions. The transient distributions of electron number density, positive and negative ion number density, net space charge density, axial electric field, axial potential between electrodes, and near-cathode sheath are obtained from the numerical model. The computational results show that the electron density in the arc column increases, then decreases, and then stabilizes during the near-cathode sheath formation process, and the arc column's diameter gradually becomes wider. The 11.14 V–12.33 V drops along the17 μm space charge layer away from the cathode(65.5 k V/m–72.5 k V/m) when the current varies from 20 k A–80 k A.The homogeneous external magnetic field has little effect on the distribution of particles in the near-cathode sheath core,but the electron number density at the near-cathode sheath periphery can increase as the magnetic field increases and the homogeneous external magnetic field will lead to arc diffusion. The validity of the numerical model can be proven by comparison with the experiment.
基金Project(BE2010043) supported by the Technology Support Program of Jiangsu Province,ChinaProject(CXZZ13_0928) supported by the Graduate Education Innovation Project of Jiangsu Province,China
文摘The novel method to analyze metallic structure corrosion status was proposed in the presence of stray current in DC mass transit systems. Firstly, the characteristic parameter and the influence parameters for the corrosion status were determined. Secondly, an experimental system was established for simulating the corrosion process within the stray current interference. Then, a predictive model for the corrosion status was built, using a support vector machine(SVM) method and experimental data. The data were divided into two sets, including training set and testing set. The training set was used to generate the SVM model and the testing set was used to evaluate the predictive performance of the SVM model. The results show that the relationship between the characteristic parameter and the influence parameters is nonlinear and the SVM model is suitable for predicting the corrosion status.
文摘DC magnetic biasing problem,caused by the DC grounding electrode, threatened the safe operation of AC power grid. In this paper, the characteristics of the soil stratification near DC grounding electrode was researched. The AC-DC interconnected large-scale system model under the monopole operation mode was established. The earth surface potential and DC current distribution in various stations under the different surface thickness was calculated. Some useful conclusions are drawn from the analyzed results.
文摘This paper focus on the Modeling and Calculation of DC current distribution in AC power grid induced under HVDC Ground-Return-Mode. Applying complex image method and boundary element method, a new field-circuit coupling model was set up. Based on the calculation result with complex image method, this paper derived the modification factor for induced earth potential from practical measurement, which increased the accuracy of calculation. The modification method is helpful for evaluation on the effect of means used for blocking the dc-bias current in transformer neutral and also useful for the forecast of the DC current distribution when the power grid is in different line connection mode. The DC distribution character in Guangdong power grid is shown and suggestion is proposed that the mitigation of dc-bias should start from those substations whose earth-potential is highest.
文摘The superconducting tokamak HT-7U [1] has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW /2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the most efficient non-induction device can heat the plasma and drive the plasma current has been efficiently in operation 'owl and a particular design of the 2.8 MW/-35 kV high-voltage DC power supply has been already completed and will apply to the klystron of LHCD on HT-7 and the future HT-7U, and the project of the power supply has been examined and approved professionally by an authorized group of high-level specialist in the institute of Plasma Physics. The detailed design of the power supply and the simulation results are referred in the paper.
基金This project is funded by the Dongying Science Development Fund Project(DJ2021013).
文摘Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC grid.In order to suppress the rising speed of the fault current and reduce the current interruption requirements of the main breaker(MB),a fault current limiting hybrid DC circuit breaker(FCL-HCB)has been proposed in this paper,and it has the capability of bidirectional fault current limiting and fault current interruption.After the occurrence of the overcurrent in the HVDC grid,the current limiting circuit(CLC)of FCL-HCB is put into operation immediately,and whether the protected line is cut off or resumed to normal operation is decided according to the fault detection result.Compared with the traditional hybrid DC circuit breaker(HCB),the required number of semiconductor switches and the peak value of fault current after fault occurs are greatly reduced by adopting the proposed device.Extensive simulations also verify the effectiveness of the proposed FCL-HCB.
文摘In order to guarantee quality during mass serial production of motors, a convenient approach on how to detect and diagnose the faults of a permanent-magnetic DC motor based on armature current analysis and BP neural networks was presented in this paper. The fault feature vector was directly established by analyzing the armature current. Fault features were extracted from the current using various signal processing methods including Fourier analysis, wavelet analysis and statistical methods. Then an advanced BP neural network was used to finish decision-making and separate fault patterns. Finally, the accuracy of the method in this paper was verified by analyzing the mechanism of faults theoretically. The consistency between the experimental results and the theoretical analysis shows that four kinds of representative faults of low power permanent-magnetic DC motors can be diagnosed conveniently by this method. These four faults are brush fray, open circuit of components, open weld of components and short circuit between armature coils. This method needs fewer hardware instruments than the conventional method and whole procedures can be accomplished by several software packages developed in this paper.
基金Project Supported by National Natural Science Foundation of China( 10476022 ).
文摘Recently years,UHVDC transmission system is paid more attention to in the field of China's power system.It takes key part in the China electrical power development stratagem.But,many problems are caused by UHVDC system,such as DC bias,corrosion of metal underground and so on.DC bias is harm to the transformers nearby UHVDC grounding polar.In this paper,the influences of DC grounding current on transformer are introduced and some suggestions of DC bias solution were provided.And,the relationship between UHVDC Grounding Current and grounding Resistance of Substation was analyzed.Firstly,two-part network circuit was used to equivalent the grounding circuit.Then,an analysis of rules was done between DC bias current and grounding resistance.Finally,the conclusion is given that DC bias current rises fast as DC grounding resistance or AC grounding resistance rises.It drops when resistance of AC transmission line or interaction resistance between DC grounding system and AC grounding system rises.Decreasing AC grounding resistance and DC grounding resistance is important to restrain DC bias current.Increasing resistance of AC transmission line such as adding resistance into transformer neutral-point grounding is a useful way to limit DC bias current.
基金funded by the National Research Developm ent and Innovation Office (NKFIH-K1468 73) (to BP)。
文摘Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events are significantly slower than the excitatory postsynaptic currents.Parameters of slow inward currents are determined by seve ral factors including the mechanisms of astrocytic activation and glutamate release,as well as the diffusion pathways from the release site towards the extra synaptic recepto rs.Astrocytes are stimulated by neuronal network activity,which in turn excite neurons,forming an astrocyte-neuron feedback loop.Mostly as a consequence of brain edema,astrocytic swelling can also induce slow inward currents under pathological conditions.There is a growing body of evidence on the roles of slow inward currents on a single neuron or local network level.These events often occur in synchro ny on neurons located in the same astrocytic domain.Besides synchronization of neuronal excitability,slow inward currents also set synaptic strength via eliciting timing-dependent synaptic plasticity.In addition,slow inward currents are also subject to non-synaptic plasticity triggered by long-la sting stimulation of the excitatory inputs.Of note,there might be important regionspecific differences in the roles and actions triggering slow inward currents.In greater networks,the pathophysiological roles of slow inward currents can be better understood than physiological ones.Slow inward currents are identified in the pathophysiological background of autism,as slow inward currents drive early hypersynchrony of the neural networks.Slow inward currents are significant contributors to paroxysmal depolarizational shifts/interictal spikes.These events are related to epilepsy,but also found in Alzheimer's disease,Parkinson's disease,and stroke,leading to the decline of cognitive functions.Events with features overlapping with slow inward currents(excitatory,N-methyl-Daspartate-receptor mediated currents with astrocytic contribution) as ischemic currents and spreading depolarization also have a well-known pathophysiological role in worsening consequences of stroke,traumatic brain injury,or epilepsy.One might assume that slow inward currents occurring with low frequency under physiological conditions might contribute to synaptic plasticity and memory formation.However,to state this,more experimental evidence from greater neuronal networks or the level of the individual is needed.In this review,I aimed to summarize findings on slow inward currents and to speculate on the potential functions of it.