The effect of sliding duration on the tribological behaviors of spot patterned coatings was investigated. Two patterns based on physical vapor deposition (PVD) TiN coatings were used, such as, in-lined (IN) and st...The effect of sliding duration on the tribological behaviors of spot patterned coatings was investigated. Two patterns based on physical vapor deposition (PVD) TiN coatings were used, such as, in-lined (IN) and staggered (ST) spots. The tribological behaviors were evaluated by using a Cameron-Plint wear test rig. The M2 steel discs deposited TiN coatings with IN and ST patterns slid against the ASSAB 17 tool steel pins at a speed of 0.23 m/s, in Shell Tellus T32 lubricant and were loaded with 900 N. The testing results on disc specimens with two types of PVD TiN spot patterns, all coated with a bias voltage of-180 V and slid for 4, 8 and 11 h respectively, were presented. The results revealed that the in-lined coatings possessed relatively better wear behaviors than the staggered pattern coatings. Mechanisms for such superiority and for the cause of peeling were discussed. A relevant design approach was suggested for the application of such patterned coatings.展开更多
Cu-P-silicon carbide (SiC) composite coatings were deposited by means of electroless plating.The effects of pH values,temperature,and different concentrations of sodium hypophosphite (NaH2PO2·H2O),nickel sulf...Cu-P-silicon carbide (SiC) composite coatings were deposited by means of electroless plating.The effects of pH values,temperature,and different concentrations of sodium hypophosphite (NaH2PO2·H2O),nickel sulfate (NiSO4·6H2O),sodium citrate (C6H5Na3O7·2H2O) and SiC on the deposition rate and coating compositions were evaluated,and the bath formulation for Cu-P-SiC composite coatings was optimised.The coating compositions were determined using energy-dispersive X-ray analysis (EDX).The corresponding optimal operating parameters for depositing Cu-P-SiC are as follows:pH 9;temperature,90oC;NaH2PO2·H2O concentration,125 g/L;NiSO4·6H2O concentration,3.125 g/L;SiC concentration,5 g/L;and C6H5Na3O7·2H2O concentration,50 g/L.The surface morphology of the coatings analysed by scanning electron microscopy (SEM) shows that Cu particles are uniformly distributed.The hardness and wear resistance of Cu-P composite coatings are improved with the addition of SiC particles and increase with the increase of SiC content.展开更多
Electro-spark deposition(ESD) was adopted for preparing high property coatings by depositing WC-8Co cemented carbide on an spheroidal graphite roll substrate.The microstructure and properties of the coating were inv...Electro-spark deposition(ESD) was adopted for preparing high property coatings by depositing WC-8Co cemented carbide on an spheroidal graphite roll substrate.The microstructure and properties of the coating were investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM) with energy dispersive X-ray(EDX) and ball-disc configuration wear tester.The results show that nanosized particles and amorphous structures prevail in the coating which is metallurgically bonded to the substrate.The microstructures of the transition zone include columnar structure and equiaxed structure.The primary phases of the coating contain W2C, W6C2.54, Fe3W3C, and Co3W3C.The results of abrasive test show that the coating has low friction coefficients(μaverage = 0.18) and the wear mechanisms are mainly abrasive wear, fatigue wear, and oxidation wear.The maximum microhardness value of the coating is about 17410 N/mm2.The study reveals that the electro-spark deposition process has better coating quality and the coating has high wear resistance and hardness.展开更多
Niobium carbide coating was produced by thermal-reactive diffusion technique on AISI 52100 steel in salt bath at 1 123 K, 1 173 K, and 1 223 K for 1, 2, 4, and 6 hours. The salt consisted of borax, sodium fl uoride, b...Niobium carbide coating was produced by thermal-reactive diffusion technique on AISI 52100 steel in salt bath at 1 123 K, 1 173 K, and 1 223 K for 1, 2, 4, and 6 hours. The salt consisted of borax, sodium fl uoride, boron carbide, and niobium pentoxide. The presence of NbC phase on the steel surface was confi rmed by X-ray diffraction analysis. Microscopic observation showed that niobium carbide coating formed on the substrate was smooth and compact. There was a distinct and fl at interface between the coating and substrate. The micro-hardness of niobium carbide coating was 2892±145HV. The thickness of coating ranged from 1.6 μm to 14μm. The forming kinetics of niobium carbide coating was revealed. Moreover, a contour diagram derived from experimental data was graphed for correct selection of process parameters. Some mathematical equations were built for predicting the coating thickness with predetermined processing temperature and time. The results showed that these mathematical equations are very practical as well as the kinetics equation.展开更多
Electrospray,as a liquid source supply system,has been applied to chemical vapour deposition(CVD).In thermal CVD,the microstructure of the obtained films changes from dense to coarse granular because of the decreasi...Electrospray,as a liquid source supply system,has been applied to chemical vapour deposition(CVD).In thermal CVD,the microstructure of the obtained films changes from dense to coarse granular because of the decreasing surface temperature during deposition.Using the electrospray laser chemical vapour deposition method,we prepared homogenous alumina coatings.We found that laser irradiation was effective in compensating the surface temperature decrease,and an alpha-alumina coating with dense columnar microstructures was obtained at a deposition rate of 200 μm/h using 200 W Nd:YAG laser irradiation.展开更多
To increase the performance and efficiency of thermal barrier coating (TBC), it is important to improve the thermal insulation property. In this work, a columnar AI film was deposited at the top of 7 wt% yttria- sta...To increase the performance and efficiency of thermal barrier coating (TBC), it is important to improve the thermal insulation property. In this work, a columnar AI film was deposited at the top of 7 wt% yttria- stabilized zirconia (7YSZ) TBC by magnetron sputtering. A vacuum heat treatment was then carried out to improve the insulation property of Al-deposited TBC. Reaction mechanism of AI-ZrO2 system in AIdeposited TBC was studied by differential thermal analysis (DTA). The phase structures of the assprayed TBC, the Al-deposited and vacuum-treated TBC were characterized. The microstructure evolution of M-deposited TBC was illustrated after vacuum heat treatment. And the insulation property of the assprayed TBC and treated TBC was compared. The results show that a multi-scaled layer, consisting of micron/ nano structured α-Al2O3 and AI3Zr grain was in situ synthesized at the top of 7YSZ coating via vacuum heat treatment. The TBC with the multi-scaled overlay has better insulation property than the asspraved TBC.展开更多
Cobalt ferrite nanoparticles(CFNPs) were prepared via a reverse micelle method. The CFNPs were subsequently coated with carbon shells by means of thermal chemical vapor deposition(TCVD). In this process, acetylene...Cobalt ferrite nanoparticles(CFNPs) were prepared via a reverse micelle method. The CFNPs were subsequently coated with carbon shells by means of thermal chemical vapor deposition(TCVD). In this process, acetylene gas(C2H2) was used as a carbon source and the coating was carried out for 1, 2, or 3 h at 750℃. The Ar/C2H2 ratio was 10:1. Heating during the TCVD process resulted in a NP core size that approached 30 nm; the thickness of the shell was less than 10 nm. The composition, structure, and morphology of the fabricated composites were characterized using X-ray diffraction, simultaneous thermal analysis, transmission electron microscopy, high-resolution transmission electron microscopy, and selected-area diffraction. A vibrating sample magnetometer was used to survey the samples' magnetic properties. The deposited carbon shell substantially affected the growth and magnetic properties of the CFNPs. Micro-Raman spectroscopy was used to study the carbon coating and revealed that the deposited carbon comprised graphite, multiwalled carbon nanotubes, and diamond-like carbon. With an increase in coating time, the intensity ratio between the amorphous and ordered peaks in the Raman spectra decreased, which indicated an increase in crystallite size.展开更多
La2Zr2O7 thermal barrier coatings(TBCs) with dispersed Pt particles were prepared by cathode plasma electrolytic deposition(CPED) with ceramic balls added to the cathode region. Compared with the conventional CPED...La2Zr2O7 thermal barrier coatings(TBCs) with dispersed Pt particles were prepared by cathode plasma electrolytic deposition(CPED) with ceramic balls added to the cathode region. Compared with the conventional CPED, when ceramic balls are used in the cathode region, the plasma discharge ignition current density decreases approximately 62-fold and the stable plasma discharges occur at the whole cathode surface. Such TBCs with a thickness of 100 μm exhibit a crack-free surface and are composed of pyrochlore-structured La2Zr2O7. Cyclic oxidation, scratching, and thermal insulation capability tests show that such TBCs not only exhibit high resistance to oxidation and spallation but also provide good thermal insulation. These beneficial effects are attributed to the excellent properties of TBCs, such as good thermal insulation because of low thermal conductivity, high-temperature oxidation resistance because of low-oxygen diffusion rate, and good mechanical properties because of the toughening effect of Pt particles.展开更多
The objective of this study was to determine the role of functional groups of silane coupling on bioactive titanium (Ti) surface by electrochemical deposition, and calcium phosphate (CAP) coating, as well as bone ...The objective of this study was to determine the role of functional groups of silane coupling on bioactive titanium (Ti) surface by electrochemical deposition, and calcium phosphate (CAP) coating, as well as bone cell adhesion and proliferation. Methyl group (-CH3), amino group (-NH2), and epoxy group (-glyph name--C(O)C) were introduced onto the bioactive Ti surface using self-assembled monolayers (SAMs) with different silane coupling agents as molecular bridges. The effect of the surface functional groups on the growth features of the CaP crystals was analyzed (including chemical compositions, element content, minerals morphology and crystal structure etc.). CH3-terminated SAMs showed a hydrophobic surface and others were hydrophilic by contact angle measurement; NH2-terminated SAMs showed a positive charge and others were negatively charged using zeta-potential measurement. Scanning electron microscopy results confirmed that flower-like structure coatings consisting of various pinpoint-like crystals were formatted by different functional groups of silane coupling, and the CaP coatings were multicrystalline consisting of hydroxyapatite (HA) and precursors. CaP coating of CH3-terminated SAMs exhibited more excellent crystallization property as compared to coatings of --NH2 and -C(O)C groups. In vitro MC3T3- El cells adhesion and proliferation were performed. The results showed that CaP coatings on silane coupling functionalized surfaces supported cell adhesion and proliferation. Thus, these functional groups of silane coupling on Ti can form homogeneous and oriented nano-CaP coatings and provide a more biocompatible surface for bone regeneration and biomedical applications.展开更多
The Cr-/Si-modified Ni Al Hf coatings were produced on single-crystal(SC) superalloy N5 by electron beam physical vapor deposition(EB-PVD). The cyclic oxidation behavior of the coatings at 1100 °C was investi...The Cr-/Si-modified Ni Al Hf coatings were produced on single-crystal(SC) superalloy N5 by electron beam physical vapor deposition(EB-PVD). The cyclic oxidation behavior of the coatings at 1100 °C was investigated. The microstructures of the oxide scales grown on the coatings were characterized by scanning electron microscope(SEM) with energy-dispersive X-ray spectrum(EDX),electron probe micro-analyzer(EPMA) and X-ray diffraction(XRD). The effects of Cr and Si on the cyclic oxidation behavior of the Ni Al Hf coatings were discussed. The addition of Si to the Ni Al Hf Cr coating not only reduces the oxidation rate but also enhances the oxide scale adherence.Owing to the addition of Si in the coating, the segregation of Cr and Mo beneath the oxide scale is effectively avoided,which contributes to enhancing oxide scale adherence.展开更多
Aluminium alloys are commonly used as lightweight materials in the automotive industry.This non-ferrous family of metallic alloys offers a high versatility of properties and designs.To reduce weight and improve safety...Aluminium alloys are commonly used as lightweight materials in the automotive industry.This non-ferrous family of metallic alloys offers a high versatility of properties and designs.To reduce weight and improve safety,high strength-to-weight ratio alloys(e.g.6XXX and 7XXX),are increasingly implemented in vehicles.However,these alloys exhibit low formability and experience considerable springback during cold forming,and are therefore hot formed.During forming,severe adhesion(i.e.galling)of aluminium onto the die surface takes place.This phenomenon has a detrimental effect on the surface properties,geometrical tolerances of the formed parts and maintenance of the dies.The effect of surface engineering as well as lubricant chemistry on galling has not been sufficiently investigated.Diamond-like carbon(DLC)and CrN physical vapour deposition(PVD)coated steel have been studied to reduce aluminium transfer.However,the interaction between lubricants and PVD coatings during hot forming of aluminium alloys is not yet fully understood.The present study thus aims to characterise the high temperature tribological behaviour of selected PVD coatings and lubricants during sliding against aluminium alloy.The objectives are to first select promising lubricant-coating combinations and then to study their tribological response in a high-temperature reciprocating friction and wear tester.Dry and lubricated tests were carried out at 300℃ using a commercial polymer lubricant.Tests using DLC,CrN,CrTiN,and CrAIN coated tool steel were compared to uncoated tool steel reference tests.The initial and worn test specimen surfaces were analysed with a 3-dimensional(3D)optical profiler,scanning electron microscope(SEM)and energy dispersive X-ray spectroscope(EDS)as to understand the wear mechanisms.The results showed formation of tribolayers in the contact zone,reducing both friction and wear.The stability of these layers highly depends on both the coatings'roughness and chemical affinity towards aluminium.The DLC and CrN coatings combined with the polymer lubricant were the most effective in reducing aluminium transfer.展开更多
The properties of nanoparticles are often different from those of larger grains of the same solid material because of their very large specific surface area. This enables many novel applications, but properties such a...The properties of nanoparticles are often different from those of larger grains of the same solid material because of their very large specific surface area. This enables many novel applications, but properties such as agglomeration can also hinder their potential use. By creating nanostructured particles one can take optimum benefit from the desired properties while minimizing the adverse effects. We aim at developing high-precision routes for scalable production of nanostructured particles. Two gas-phase synthesis routes are explored. The first one - covering nanoparticles with a continuous layer - is carried out using atomic layer deposition in a fluidized bed. Through fluidization, the full surface area of the nanoparticles becomes available. With this process, particles can be coated with an ultra-thin film of constant and well-tunable thickness. For the second route - attaching nanoparticles to larger particles - a novel approach using electrostatic forces is demonstrated. The micron-sized particles are charged with one polarity using tribocharging. Using electrospraying, a spray of charged nanoparticles with opposite polarity is generated. Their charge prevents agglomeration, while it enhances efficient deposition at the surface of the host particle. While the proposed processes offer good potential for scale-up, further work is needed to realize large-scale processes.展开更多
Particle coating is an important method that can be used to expand particle-technology applications. Coated-particle design and preparation for nuclear fuel-element trajectory tracing were focused on in this paper. Pa...Particle coating is an important method that can be used to expand particle-technology applications. Coated-particle design and preparation for nuclear fuel-element trajectory tracing were focused on in this paper. Particles that contain elemental cobalt were selected because of the characteristic gamma ray spectra of 60Co. A novel particle-structure design was proposed by coating particles that contain elemental cobalt with a high-density silicon-carbide (SiC) layer. During the coating process with the high-density SiC layer, cobalt metal was formed and diffused towards the coating, so an inner SiC–CoxSi layer was designed and obtained by fluidized-bed chemical vapor deposition coupled with in-situ chemical reaction. The coating layers were studied by X-ray diffractometry, scanning electron microscopy, and energy dispersive X-ray spectroscopy techniques. The chemical composition was also determined by inductively coupled plasma optical emission spectrometry. The novel particle design can reduce the formation of metallic cobalt and prevent cobalt diffusion in the coating process, which can maintain safety in a nuclear reactor for an extended period. The experimental results also validated that coated particles maintain their structural integrity at extremely high temperatures (~1950 °C), which meets the requirements of next-generation nuclear reactors.展开更多
基金the National Natural Science Foundation of China (No. 50575173).
文摘The effect of sliding duration on the tribological behaviors of spot patterned coatings was investigated. Two patterns based on physical vapor deposition (PVD) TiN coatings were used, such as, in-lined (IN) and staggered (ST) spots. The tribological behaviors were evaluated by using a Cameron-Plint wear test rig. The M2 steel discs deposited TiN coatings with IN and ST patterns slid against the ASSAB 17 tool steel pins at a speed of 0.23 m/s, in Shell Tellus T32 lubricant and were loaded with 900 N. The testing results on disc specimens with two types of PVD TiN spot patterns, all coated with a bias voltage of-180 V and slid for 4, 8 and 11 h respectively, were presented. The results revealed that the in-lined coatings possessed relatively better wear behaviors than the staggered pattern coatings. Mechanisms for such superiority and for the cause of peeling were discussed. A relevant design approach was suggested for the application of such patterned coatings.
基金supported by Universiti Sains Malaysia under the Research University Grant (RU. Grant No.1001/PKIMIA/811006)
文摘Cu-P-silicon carbide (SiC) composite coatings were deposited by means of electroless plating.The effects of pH values,temperature,and different concentrations of sodium hypophosphite (NaH2PO2·H2O),nickel sulfate (NiSO4·6H2O),sodium citrate (C6H5Na3O7·2H2O) and SiC on the deposition rate and coating compositions were evaluated,and the bath formulation for Cu-P-SiC composite coatings was optimised.The coating compositions were determined using energy-dispersive X-ray analysis (EDX).The corresponding optimal operating parameters for depositing Cu-P-SiC are as follows:pH 9;temperature,90oC;NaH2PO2·H2O concentration,125 g/L;NiSO4·6H2O concentration,3.125 g/L;SiC concentration,5 g/L;and C6H5Na3O7·2H2O concentration,50 g/L.The surface morphology of the coatings analysed by scanning electron microscopy (SEM) shows that Cu particles are uniformly distributed.The hardness and wear resistance of Cu-P composite coatings are improved with the addition of SiC particles and increase with the increase of SiC content.
基金supported by the International Science and Technology Cooperation Project of the Ministry of Science and Technology of China (No. 2006DFA52240)
文摘Electro-spark deposition(ESD) was adopted for preparing high property coatings by depositing WC-8Co cemented carbide on an spheroidal graphite roll substrate.The microstructure and properties of the coating were investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM) with energy dispersive X-ray(EDX) and ball-disc configuration wear tester.The results show that nanosized particles and amorphous structures prevail in the coating which is metallurgically bonded to the substrate.The microstructures of the transition zone include columnar structure and equiaxed structure.The primary phases of the coating contain W2C, W6C2.54, Fe3W3C, and Co3W3C.The results of abrasive test show that the coating has low friction coefficients(μaverage = 0.18) and the wear mechanisms are mainly abrasive wear, fatigue wear, and oxidation wear.The maximum microhardness value of the coating is about 17410 N/mm2.The study reveals that the electro-spark deposition process has better coating quality and the coating has high wear resistance and hardness.
基金Funded by the National Natural Science Foundation of China(No.50675165)the National Key Technology R&D Program(No.2006BAF02A29)+1 种基金the Specialized Research Fund for the Doctoral Pro-gram of Higher Education of China(20131420120002)the Shanxi Prov-ince Science Foundation(No.2013011025-1)
文摘Niobium carbide coating was produced by thermal-reactive diffusion technique on AISI 52100 steel in salt bath at 1 123 K, 1 173 K, and 1 223 K for 1, 2, 4, and 6 hours. The salt consisted of borax, sodium fl uoride, boron carbide, and niobium pentoxide. The presence of NbC phase on the steel surface was confi rmed by X-ray diffraction analysis. Microscopic observation showed that niobium carbide coating formed on the substrate was smooth and compact. There was a distinct and fl at interface between the coating and substrate. The micro-hardness of niobium carbide coating was 2892±145HV. The thickness of coating ranged from 1.6 μm to 14μm. The forming kinetics of niobium carbide coating was revealed. Moreover, a contour diagram derived from experimental data was graphed for correct selection of process parameters. Some mathematical equations were built for predicting the coating thickness with predetermined processing temperature and time. The results showed that these mathematical equations are very practical as well as the kinetics equation.
文摘Electrospray,as a liquid source supply system,has been applied to chemical vapour deposition(CVD).In thermal CVD,the microstructure of the obtained films changes from dense to coarse granular because of the decreasing surface temperature during deposition.Using the electrospray laser chemical vapour deposition method,we prepared homogenous alumina coatings.We found that laser irradiation was effective in compensating the surface temperature decrease,and an alpha-alumina coating with dense columnar microstructures was obtained at a deposition rate of 200 μm/h using 200 W Nd:YAG laser irradiation.
基金supported by the National Basic Research Program of China ("973" program, No. 2012CB625100)the National Hightech Research and Development Program of China ("863" program, No. 2012AA03A512)
文摘To increase the performance and efficiency of thermal barrier coating (TBC), it is important to improve the thermal insulation property. In this work, a columnar AI film was deposited at the top of 7 wt% yttria- stabilized zirconia (7YSZ) TBC by magnetron sputtering. A vacuum heat treatment was then carried out to improve the insulation property of Al-deposited TBC. Reaction mechanism of AI-ZrO2 system in AIdeposited TBC was studied by differential thermal analysis (DTA). The phase structures of the assprayed TBC, the Al-deposited and vacuum-treated TBC were characterized. The microstructure evolution of M-deposited TBC was illustrated after vacuum heat treatment. And the insulation property of the assprayed TBC and treated TBC was compared. The results show that a multi-scaled layer, consisting of micron/ nano structured α-Al2O3 and AI3Zr grain was in situ synthesized at the top of 7YSZ coating via vacuum heat treatment. The TBC with the multi-scaled overlay has better insulation property than the asspraved TBC.
文摘Cobalt ferrite nanoparticles(CFNPs) were prepared via a reverse micelle method. The CFNPs were subsequently coated with carbon shells by means of thermal chemical vapor deposition(TCVD). In this process, acetylene gas(C2H2) was used as a carbon source and the coating was carried out for 1, 2, or 3 h at 750℃. The Ar/C2H2 ratio was 10:1. Heating during the TCVD process resulted in a NP core size that approached 30 nm; the thickness of the shell was less than 10 nm. The composition, structure, and morphology of the fabricated composites were characterized using X-ray diffraction, simultaneous thermal analysis, transmission electron microscopy, high-resolution transmission electron microscopy, and selected-area diffraction. A vibrating sample magnetometer was used to survey the samples' magnetic properties. The deposited carbon shell substantially affected the growth and magnetic properties of the CFNPs. Micro-Raman spectroscopy was used to study the carbon coating and revealed that the deposited carbon comprised graphite, multiwalled carbon nanotubes, and diamond-like carbon. With an increase in coating time, the intensity ratio between the amorphous and ordered peaks in the Raman spectra decreased, which indicated an increase in crystallite size.
基金financially supported by the National Natural Science Foundation of China (No. 51271030)
文摘La2Zr2O7 thermal barrier coatings(TBCs) with dispersed Pt particles were prepared by cathode plasma electrolytic deposition(CPED) with ceramic balls added to the cathode region. Compared with the conventional CPED, when ceramic balls are used in the cathode region, the plasma discharge ignition current density decreases approximately 62-fold and the stable plasma discharges occur at the whole cathode surface. Such TBCs with a thickness of 100 μm exhibit a crack-free surface and are composed of pyrochlore-structured La2Zr2O7. Cyclic oxidation, scratching, and thermal insulation capability tests show that such TBCs not only exhibit high resistance to oxidation and spallation but also provide good thermal insulation. These beneficial effects are attributed to the excellent properties of TBCs, such as good thermal insulation because of low thermal conductivity, high-temperature oxidation resistance because of low-oxygen diffusion rate, and good mechanical properties because of the toughening effect of Pt particles.
基金supported by the National Key Basic Research Program of China (No. 2012CB619100)the National Natural Science Foundation of China (No. 51541201, 51372087)+2 种基金the Science and Technology Planning Project of Guangdong Province, China (No. 2014A010105048)the Natural Science Foundation of Guangdong Province, China (No. 2015A030313493)the State Key Laboratory for Mechanical Behavior of Materials, China (No. 20141607)
文摘The objective of this study was to determine the role of functional groups of silane coupling on bioactive titanium (Ti) surface by electrochemical deposition, and calcium phosphate (CAP) coating, as well as bone cell adhesion and proliferation. Methyl group (-CH3), amino group (-NH2), and epoxy group (-glyph name--C(O)C) were introduced onto the bioactive Ti surface using self-assembled monolayers (SAMs) with different silane coupling agents as molecular bridges. The effect of the surface functional groups on the growth features of the CaP crystals was analyzed (including chemical compositions, element content, minerals morphology and crystal structure etc.). CH3-terminated SAMs showed a hydrophobic surface and others were hydrophilic by contact angle measurement; NH2-terminated SAMs showed a positive charge and others were negatively charged using zeta-potential measurement. Scanning electron microscopy results confirmed that flower-like structure coatings consisting of various pinpoint-like crystals were formatted by different functional groups of silane coupling, and the CaP coatings were multicrystalline consisting of hydroxyapatite (HA) and precursors. CaP coating of CH3-terminated SAMs exhibited more excellent crystallization property as compared to coatings of --NH2 and -C(O)C groups. In vitro MC3T3- El cells adhesion and proliferation were performed. The results showed that CaP coatings on silane coupling functionalized surfaces supported cell adhesion and proliferation. Thus, these functional groups of silane coupling on Ti can form homogeneous and oriented nano-CaP coatings and provide a more biocompatible surface for bone regeneration and biomedical applications.
基金financially supported by the National Basic Research Program of China (Nos. 2012CB625100 and 2010CB631200)the National Natural Science Foundation of China (No. 51231001)
文摘The Cr-/Si-modified Ni Al Hf coatings were produced on single-crystal(SC) superalloy N5 by electron beam physical vapor deposition(EB-PVD). The cyclic oxidation behavior of the coatings at 1100 °C was investigated. The microstructures of the oxide scales grown on the coatings were characterized by scanning electron microscope(SEM) with energy-dispersive X-ray spectrum(EDX),electron probe micro-analyzer(EPMA) and X-ray diffraction(XRD). The effects of Cr and Si on the cyclic oxidation behavior of the Ni Al Hf coatings were discussed. The addition of Si to the Ni Al Hf Cr coating not only reduces the oxidation rate but also enhances the oxide scale adherence.Owing to the addition of Si in the coating, the segregation of Cr and Mo beneath the oxide scale is effectively avoided,which contributes to enhancing oxide scale adherence.
文摘Aluminium alloys are commonly used as lightweight materials in the automotive industry.This non-ferrous family of metallic alloys offers a high versatility of properties and designs.To reduce weight and improve safety,high strength-to-weight ratio alloys(e.g.6XXX and 7XXX),are increasingly implemented in vehicles.However,these alloys exhibit low formability and experience considerable springback during cold forming,and are therefore hot formed.During forming,severe adhesion(i.e.galling)of aluminium onto the die surface takes place.This phenomenon has a detrimental effect on the surface properties,geometrical tolerances of the formed parts and maintenance of the dies.The effect of surface engineering as well as lubricant chemistry on galling has not been sufficiently investigated.Diamond-like carbon(DLC)and CrN physical vapour deposition(PVD)coated steel have been studied to reduce aluminium transfer.However,the interaction between lubricants and PVD coatings during hot forming of aluminium alloys is not yet fully understood.The present study thus aims to characterise the high temperature tribological behaviour of selected PVD coatings and lubricants during sliding against aluminium alloy.The objectives are to first select promising lubricant-coating combinations and then to study their tribological response in a high-temperature reciprocating friction and wear tester.Dry and lubricated tests were carried out at 300℃ using a commercial polymer lubricant.Tests using DLC,CrN,CrTiN,and CrAIN coated tool steel were compared to uncoated tool steel reference tests.The initial and worn test specimen surfaces were analysed with a 3-dimensional(3D)optical profiler,scanning electron microscope(SEM)and energy dispersive X-ray spectroscope(EDS)as to understand the wear mechanisms.The results showed formation of tribolayers in the contact zone,reducing both friction and wear.The stability of these layers highly depends on both the coatings'roughness and chemical affinity towards aluminium.The DLC and CrN coatings combined with the polymer lubricant were the most effective in reducing aluminium transfer.
文摘The properties of nanoparticles are often different from those of larger grains of the same solid material because of their very large specific surface area. This enables many novel applications, but properties such as agglomeration can also hinder their potential use. By creating nanostructured particles one can take optimum benefit from the desired properties while minimizing the adverse effects. We aim at developing high-precision routes for scalable production of nanostructured particles. Two gas-phase synthesis routes are explored. The first one - covering nanoparticles with a continuous layer - is carried out using atomic layer deposition in a fluidized bed. Through fluidization, the full surface area of the nanoparticles becomes available. With this process, particles can be coated with an ultra-thin film of constant and well-tunable thickness. For the second route - attaching nanoparticles to larger particles - a novel approach using electrostatic forces is demonstrated. The micron-sized particles are charged with one polarity using tribocharging. Using electrospraying, a spray of charged nanoparticles with opposite polarity is generated. Their charge prevents agglomeration, while it enhances efficient deposition at the surface of the host particle. While the proposed processes offer good potential for scale-up, further work is needed to realize large-scale processes.
基金This work was supported by the Natural Science Foundation of China (Grant Nos. S1302148, 21306097), the Research Fund for Independent Research Projects of Tsinghua University (Grant Nos. 20131089217, 20121088038), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20110002120023), and the Higher Education Young Elite Teacher Project of Beijing (Grant No. YETP0155).
文摘Particle coating is an important method that can be used to expand particle-technology applications. Coated-particle design and preparation for nuclear fuel-element trajectory tracing were focused on in this paper. Particles that contain elemental cobalt were selected because of the characteristic gamma ray spectra of 60Co. A novel particle-structure design was proposed by coating particles that contain elemental cobalt with a high-density silicon-carbide (SiC) layer. During the coating process with the high-density SiC layer, cobalt metal was formed and diffused towards the coating, so an inner SiC–CoxSi layer was designed and obtained by fluidized-bed chemical vapor deposition coupled with in-situ chemical reaction. The coating layers were studied by X-ray diffractometry, scanning electron microscopy, and energy dispersive X-ray spectroscopy techniques. The chemical composition was also determined by inductively coupled plasma optical emission spectrometry. The novel particle design can reduce the formation of metallic cobalt and prevent cobalt diffusion in the coating process, which can maintain safety in a nuclear reactor for an extended period. The experimental results also validated that coated particles maintain their structural integrity at extremely high temperatures (~1950 °C), which meets the requirements of next-generation nuclear reactors.