期刊文献+
共找到61篇文章
< 1 2 4 >
每页显示 20 50 100
Printability disparities in heterogeneous material combinations via laser directed energy deposition:a comparative study 被引量:1
1
作者 Jinsheng Ning Lida Zhu +9 位作者 Shuhao Wang Zhichao Yang Peihua Xu Pengsheng Xue Hao Lu Miao Yu Yunhang Zhao Jiachen Li Susmita Bose Amit Bandyopadhyay 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期389-405,共17页
Additive manufacturing provides achievability for the fabrication of bimetallic and multi-material structures;however,the material compatibility and bondability directly affect the parts’formability and final quality... Additive manufacturing provides achievability for the fabrication of bimetallic and multi-material structures;however,the material compatibility and bondability directly affect the parts’formability and final quality.It is essential to understand the underlying printability of different material combinations based on an adapted process.Here,the printability disparities of two common and attractive material combinations(nickel-and iron-based alloys)are evaluated at the macro and micro levels via laser directed energy deposition(DED).The deposition processes were captured using in situ high-speed imaging,and the dissimilarities in melt pool features and track morphology were quantitatively investigated within specific process windows.Moreover,the microstructure diversity of the tracks and blocks processed with varied material pairs was comparatively elaborated and,complemented with the informative multi-physics modeling,the presented non-uniformity in mechanical properties(microhardness)among the heterogeneous material pairs was rationalized.The differences in melt flow induced by the unlike thermophysical properties of the material pairs and the resulting element intermixing and localized re-alloying during solidification dominate the presented dissimilarity in printability among the material combinations.This work provides an in-depth understanding of the phenomenological differences in the deposition of dissimilar materials and aims to guide more reliable DED forming of bimetallic parts. 展开更多
关键词 directed energy deposition PRINTABILITY microstructure MICROHARDNESS bimetallic parts
下载PDF
Cracking on a nickel-based superalloy fabricated by direct energy deposition
2
作者 Xue Zhang Ya-hang Mu +4 位作者 Liang Ma Jing-jing Liang Yi-zhou Zhou Xiao-feng Sun Jin-guo Li 《China Foundry》 SCIE EI CAS CSCD 2024年第4期311-318,共8页
Cracks have consistently been a significant challenge limiting the development of additive manufactured nickel-based superalloys.It is essential to investigate the location of cracks and their forming mechanism.This s... Cracks have consistently been a significant challenge limiting the development of additive manufactured nickel-based superalloys.It is essential to investigate the location of cracks and their forming mechanism.This study extensively examines the impact of solidification process,microstructural evolution,and stress concentration on crack initiation during direct energy deposition(DED).The results emphasize that the crack formation is significantly related to large-angle grain boundaries,rapid cooling rates.Cracks caused by large-angle grain boundaries and a fast-cooling rate predominantly appear near the edge of the deposited samples.Liquation cracks are more likely to form near the top of the deposited sample,due to the presence ofγ/γ'eutectics.The secondary dendritic arm and the carbides in the interdendritic regions can obstruct liquid flow during the final stage of solidification,which results in the formation of solidification cracks and voids.This work paves the way to avoid cracks in nickel-based superalloys fabricated by DED,thereby enhancing the performance of superalloys. 展开更多
关键词 LOCATION cracks direct energy deposition nickel-based superalloys
下载PDF
Effect of hot isostatic pressure on the microstructure and tensile properties of γ'-strengthened superalloy fabricated through induction-assisted directed energy deposition
3
作者 Jianjun Xu Hanlin Ding +1 位作者 Xin Lin Feng Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1089-1097,共9页
The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples... The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples subjected to IDED under 1050℃ preheating with and without hot isostatic pressing(HIP,1190℃,105 MPa,and 3 h).Results show that the as-deposited sample mainly consisted of epitaxial columnar crystals and inhomogeneously distributed γ’ phases in interdendritic and dendritic core regions.After HIP,grain morphology changed negligibly,whereas the size of the γ’ phase became increasingly even.After further heat treatment(HT,1070℃,2 h + 845℃,24 h),the γ’ phase in the as-deposited and HIPed samples presented a bimodal size distribution,whereas that in the as-deposited sample showed a size that remained uneven.The comparison of tensile properties revealed that the tensile strength and uniform elongation of the HIP + HTed sample increased by 5% and 46%,respectively,due to the synergistic deformation of bimodal γ’phases,especially large cubic γ’ phases.Finally,the relationship between phase transformations and plastic deformations in the IDEDed sample was discussed on the basis of generalized stability theory in terms of the trade-off between thermodynamics and kinetics. 展开更多
关键词 directed energy deposition Ni-based superalloys high-temperature preheating hot isostatic pressing MICROSTRUCTURE tensile properties
下载PDF
Formation mechanism of inherent spatial heterogeneity of microstructure and mechanical properties of NiTi SMA prepared by laser directed energy deposition 被引量:4
4
作者 MengJie Luo Ruidi Li +4 位作者 Dan Zheng JingTao Kang HuiTing Wu ShengHua Deng PengDa Niu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期548-567,共20页
Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheat... Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheating,and heat accumulation during DED leads to the spatial heterogeneous distribution of columnar crystal and equiaxed crystal,a gradient distribution of Ni4Ti3 precipitates along the building direction,and preferential formation of Ni4Ti3 precipitates in the columnar zone.The austenite transformation finish temperature(Af)varies from-12.65℃(Z=33 mm)to 60.35℃(Z=10 mm),corresponding to tensile yield strength(σ0.2)changed from 120±30 MPa to 570±20 MPa,and functional properties changed from shape memory effect to superelasticity at room temperature.The sample in the Z=20.4 mm height has the best plasticity of 9.6%and the best recoverable strain of 4.2%.This work provided insights and guidelines for the spatial characterization of DEDed NiTi. 展开更多
关键词 shape memory alloy gradient functional materials laser directed energy deposition spatial heterogeneity additive manufacturing mechanical properties
下载PDF
Effect of wire-arc directed energy deposition on the microstructural formation and age-hardening response of the Mg-9Al-1Zn(AZ91)alloy
5
作者 Gloria Graf Petra Spoerk-Erdely +4 位作者 Emad Maawad Michael Burtscher Daniel Kiener Helmut Clemens Thomas Klein 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第6期1944-1958,共15页
In recent years,wire-arc directed energy deposition(wa DED),which is also commonly known as wire-arc additive manufacturing(WAAM),has emerged as a promising new fabrication technique for magnesium alloys.The major rea... In recent years,wire-arc directed energy deposition(wa DED),which is also commonly known as wire-arc additive manufacturing(WAAM),has emerged as a promising new fabrication technique for magnesium alloys.The major reason for this is the possibility of producing parts with a complex geometry as well as a fine-grained microstructure.While the process has been shown to be applicable for Mg-Al-Zn alloys,there is still a lack of knowledge in terms of the influence of the WAAM process on the age-hardening response.Consequently,this study deals with the aging response of a WAAM AZ91 alloy.In order to fully understand the mechanisms during aging,first,the as-built condition was analyzed by means of high-energy X-ray diffraction(HEXRD)and scanning electron microscopy.These investigations revealed a finegrained,equiaxed microstructure with adjacent areas of alternating Al content.Subsequently,the difference between single-and double-step aging as well as conventional and direct aging was studied on the as-built WAAM AZ91 alloy for the first time.The aging response during the various heat treatments was monitored via in situ HEXRD experiments.Corroborating electron microscopy and hardness studies were conducted.The results showed that the application of a double-step aging heat treatment at 325℃with pre-aging at 250℃slightly improves the mechanical properties when compared to the single-step heat treatment at 325℃.However,the hardness decreases considerably after the pre-aging step.Thus,aging at lower temperatures is preferable within the investigated temperature range of 250-325℃.Moreover,no significant difference between the conventionally aged and directly aged samples was found.Lastly,the specimens showed enhanced precipitation kinetics during aging as compared to cast samples.This could be attributed to a higher amount of nucleation sites and the particular temperature profile of the solution heat treatment. 展开更多
关键词 Wire-arc directed energy deposition Additive manufacturing High-energy X-ray diffraction Synchrotron Mg-Al-Zn alloys AGE-HARDENING
下载PDF
Review on laser directed energy deposited aluminum alloys 被引量:2
6
作者 Tian-Shu Liu Peng Chen +7 位作者 Feng Qiu Hong-Yu Yang Nicholas Tan Yew Jin Youxiang Chew Di Wang Ruidi Li Qi-Chuan Jiang Chaolin Tan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期84-131,共48页
Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstrea... Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined. 展开更多
关键词 additive manufacturing laser directed energy deposition(LDED) aluminum alloys PRINTABILITY aluminum matrix composite auxiliary fields mechanical properties
下载PDF
Surface Patterning of Metal Zinc Electrode with an In‑Region Zincophilic Interface for High‑Rate and Long‑Cycle‑Life Zinc Metal Anode 被引量:1
7
作者 Tian Wang Qiao Xi +8 位作者 Kai Yao Yuhang Liu Hao Fu Venkata Siva Kavarthapu Jun Kyu Lee Shaocong Tang Dina Fattakhova‑Rohlfing Wei Ai Jae Su Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期192-209,共18页
The undesirable dendrite growth induced by non-planar zinc(Zn)deposition and low Coulombic efficiency resulting from severe side reactions have been long-standing challenges for metallic Zn anodes and substantially im... The undesirable dendrite growth induced by non-planar zinc(Zn)deposition and low Coulombic efficiency resulting from severe side reactions have been long-standing challenges for metallic Zn anodes and substantially impede the practical application of rechargeable aqueous Zn metal batteries(ZMBs).Herein,we present a strategy for achieving a high-rate and long-cycle-life Zn metal anode by patterning Zn foil surfaces and endowing a Zn-Indium(Zn-In)interface in the microchannels.The accumulation of electrons in the microchannel and the zincophilicity of the Zn-In interface promote preferential heteroepitaxial Zn deposition in the microchannel region and enhance the tolerance of the electrode at high current densities.Meanwhile,electron aggregation accelerates the dissolution of non-(002)plane Zn atoms on the array surface,thereby directing the subsequent homoepitaxial Zn deposition on the array surface.Consequently,the planar dendrite-free Zn deposition and long-term cycling stability are achieved(5,050 h at 10.0 mA cm^(−2) and 27,000 cycles at 20.0 mA cm^(−2)).Furthermore,a Zn/I_(2) full cell assembled by pairing with such an anode can maintain good stability for 3,500 cycles at 5.0 C,demonstrating the application potential of the as-prepared ZnIn anode for high-performance aqueous ZMBs. 展开更多
关键词 Zn metal anode Surface patterning directional Zn deposition Aqueous Zn-I_(2)batteries
下载PDF
Revealing precipitation behavior and mechanical response of wire-arc directed energy deposited Mg-Gd-Y-Zr alloy by tailoring aging procedures
8
作者 Xinzhi Li Xuewei Fang +8 位作者 Zhiyan Zhang Shahid Ghafoor Ruikai Chen Yi Liu Kexin Tang Kai Li Minghua Ma Jiahao Shang Ke Huang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期176-200,共25页
Mg-Gd-Y-Zr alloy,as a typical magnesium rare-earth(Mg-RE)alloy,is gaining popularity in the advanced equipment manufacturing fields owing to its noticeable age-hardening properties and high specific strength.However,i... Mg-Gd-Y-Zr alloy,as a typical magnesium rare-earth(Mg-RE)alloy,is gaining popularity in the advanced equipment manufacturing fields owing to its noticeable age-hardening properties and high specific strength.However,it is extremely challenging to prepare wrought components with large dimensions and complex shapes because of the poor room-temperature processability of Mg-Gd-Y-Zr alloy.Herein,we report a wire-arc directed energy deposited(DED)Mg-10.45Gd-2.27Y-0.52Zr(wt.%,GW102K)alloy with high RE content presenting a prominent combination of strength and ductility,realized by tailored nanoprecipitates through an optimized heat treatment procedure.Specifically,the solution-treated sample exhibits excellent ductility with an elongation(EL)of(14.6±0.1)%,while the aging-treated sample at 200°C for 58 h achieves an ultra-high ultimate tensile strength(UTS)of(371±1.5)MPa.Besides,the aging-treated sample at 250°C for 16 h attains a good strength-ductility synergy with a UTS of(316±2.1)MPa and a EL of(8.5±0.1)%.Particularly,the evolution mechanisms of precipitation response induced by various aging parameters and deformation behavior caused by nanoprecipitates type were also systematically revealed.The excellent ductility resulted from coordinating localized strains facilitated by active slip activity.And the ultra-high strength should be ascribed to the dense nano-β'hampering dislocation motion.Additionally,the shearable nano-β1 contributed to the good strength-ductility synergy.This work thus offers insightful understanding into the nanoprecipitates manipulation and performance tailoring for the wire-arc DED preparation of large-sized Mg-Gd-Y-Zr components with complex geometries. 展开更多
关键词 wire-arc directed energy deposition Mg-Gd-Y-Zr alloy precipitation response prominent strength-ductilitycombination deformation mechanism
下载PDF
Microstructure and mechanical property of additively manufactured NiTi alloys:A comparison between selective laser melting and directed energy deposition 被引量:11
9
作者 ZHENG Dan LI Rui-di +4 位作者 YUAN Tie-chui XIONG Yi SONG Bo WANG Jia-xing SU Ya-dong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1028-1042,共15页
NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emph... NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emphasis on its phase composition,microstructure,mechanical property and deformation mechanism.The results show that the yield strength and ductility obtained by SLM are 100 MPa and 8%,respectively,which are remarkably different from DED result with 700 MPa and 2%.The load path of SLM sample presents shape memory effect,corresponding to martensite phase detected by XRD;while the load path of DED presents pseudo-elasticity with austenite phase.In SLM sample,fine grain and hole provide a uniform deformation during tensile test,resulting in a better elongation.Furthermore,the nonequilibrium solidification was studied by a temperature field simulation to understand the difference of the two 3D printing methods.Both temperature gradient G and growth rate R determine the microstructure and phase in the SLM sample and DED sample,which leads to similar grain morphologies because of similar G/R.While higher G×R of SLM leads to a finer grain size in SLM sample,providing enough driving force for martensite transition and subsequently changing texture compared to DED sample. 展开更多
关键词 Ni50.8Ti49.2 shape memory alloy additive manufacturing selective laser melting laser directed energy deposition mechanical properties
下载PDF
RESEARCH ON LASER DIRECT DEPOSITION PROCESS OF Ti-6Al-4V ALLOY 被引量:2
10
作者 S.Y. Gao Y.Z. Zhang +3 位作者 L.K. Shi B.L. Du M.Z. Xi H.Z. Ji 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2007年第3期171-180,共10页
Laser direct deposition (LDD) of metallic components is an advanced technology of combining CAD/CAM (computer aided design/computer aided manufacturing), high power laser, and rapid prototyping. This technology us... Laser direct deposition (LDD) of metallic components is an advanced technology of combining CAD/CAM (computer aided design/computer aided manufacturing), high power laser, and rapid prototyping. This technology uses laser beam to melt the powders fed coaxiaUy into the molten pool by the laser beam to fabricate fuUy dense metallic components. The present article mainly studies the LDD of Ti-6Al-4V alloy, which can be used to fabricate aircraft components. The mechanical properties of the Ti-6Al-4V alloy, fabricated by LDD, are obtained using the tension test, and the oxygen content of used powders and deposited specimens are measured. In the present article, it can be seen that the mechanical properties obtained using this method are higher than the ones obtained by casting, and equal to those got by wrought anneal. One aircraft part has been made using the LDD process. Because of this aircraft part, with sophisticated shape, the effect of the laser scanning track on the internal soundness of the deposited part was discussed. 展开更多
关键词 laser direct deposition Ti-6Al-4V alloy mechanical property depositing process aircraft component
下载PDF
An experimental study on effects of temperature gradient on microstructure of a 308L stainless steel manufactured by directed energy deposition
11
作者 Ting Dai De-yu Gu +3 位作者 Yu-wen Qiu Wei Guo Hui Ding Yi-wei Sun 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第8期2031-2040,共10页
The effect of spatial temperature gradient on the microstructural evolution of a 308L stainless steel during the directed energy deposition(DED)process was experimentally investigated.A novel cooling system was design... The effect of spatial temperature gradient on the microstructural evolution of a 308L stainless steel during the directed energy deposition(DED)process was experimentally investigated.A novel cooling system was designed and incorporated to a DED system in order to control the temperature gradient along the deposition direction during solidification.During deposition,the workpiece was placed on a lifting platform,and as the deposition process proceeded,the platform and workpiece were gradually lowered into cooling water so that the temperature gradient along the deposition direction could be controlled and maintained stable during the deposition process.The microstructure characterization results indicated that a deposition strategy with higher G and G/R values(where G is temperature gradient and R is solidification rate)produced finer cellular grains that were better aligned with the deposition direction,while a deposition strategy with lower G and G/R values produced columnar grains with larger primary arm spacing and less aligned with the deposition direction. 展开更多
关键词 Additive manufacturing Directed energy deposition Stainless steel MICROSTRUCTURE Temperature gradient
原文传递
Enhanced strength-ductility synergy of magnesium alloy fabricated by ultrasound assisted directed energy deposition
12
作者 Xinzhi Li Xuewei Fang +2 位作者 Mugong Zhang Binglin Wang Ke Huang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第11期247-261,共15页
Investigations on the fabrication of large-size lightweight Mg alloy components by wire-arc directed en-ergy deposition(DED)are steadily flourishing.Nevertheless,most of these components still suffer from inferior per... Investigations on the fabrication of large-size lightweight Mg alloy components by wire-arc directed en-ergy deposition(DED)are steadily flourishing.Nevertheless,most of these components still suffer from inferior performance due to internal defects and inherent columnar grains.Herein,external ultrasound fields with different powers were successfully introduced into the wire-arc DED of AZ31 Mg alloy.The microstructure,defects,and mechanical properties of the fabricated components were carefully charac-terized and compared.The results show that the external ultrasound fields lead to decreased porosity,complete columnar to equiaxed transition(CET),and enhanced performance.Consequently,the UA90 samples exhibited a remarkable increase of~30%,~45%,and~189%in yield strength,ultimate tensile strength,and elongation,respectively.The dominant mechanisms of enhanced strength-ductility synergy were analyzed in detail.This study thus sheds new light on wire-arc DED of Mg alloy components with excellent performance via external ultrasound fields. 展开更多
关键词 Wire-arc directed energy deposition External ultrasound field Defects Microstructure evolution Strength-ductility synergy
原文传递
Pore Formation Mechanism in W-C Hard Coatings Using Directed Energy Deposition on Tungsten Alloy
13
作者 Xinrui Zhang Weijie Fu +3 位作者 Chen Wang Zhenglong Lei Haoran Sun Xudong Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第1期89-101,共13页
Porosity is a common phenomenon and can significantly hinder the quality of the coating.Here,the pore formation mechanism and the characteristics of the single tracks of the W-C coating using directed energy depositio... Porosity is a common phenomenon and can significantly hinder the quality of the coating.Here,the pore formation mechanism and the characteristics of the single tracks of the W-C coating using directed energy deposition(DED)are systematically investigated.The forming quality of the tracks,the distribution of the pores,and the elemental distribution near the pores are analyzed by the observations of the cross-sections of the tracks.The temperature field of the melt pool is discussed comprehensively to reveal the pore formation mechanism.The results confirm that Ni and Co evaporated during the DED process due to the high temperature of the melt pool.Pores were continuously produced adjacent to the fusion line when the melt pool was about to solidify since the temperature at the solidification front was higher than the boiling point of Ni.The vaporization area at the fusion line was proposed,where Ni could also evaporate at the time the melt pool started to solidify.The relationship between the solidification rate,the size of the vaporization area and the DED parameters(laser power and scanning speed)was established to discuss the causes of severe pores above the fusion line.This work contains a practical guide to reduce or eliminate the porosity in the coating preparation process on the surface of the tungsten alloy. 展开更多
关键词 Directed energy deposition(DED)process Tungsten alloy W-C coating Pores Binder phase
原文传递
Effect of Multiple Thermal Cycles on Microstructure and Mechanical Properties of Cu Modified Ti64 Thin Wall Fabricated by Wire-Arc Directed Energy Deposition
14
作者 Zidong Lin Xuefeng Zhao +5 位作者 Wei Ya Yan Li Zhen Sun Shiwei Han Xiaoyang Peng Xinghua Yu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第11期1875-1890,共16页
This study investigated the effect of thermal cycles on Cu-modified Ti64 thin-walled components deposited using the wire-arc directed energy deposition(wire-arc DED)process.For the samples before and after experiencin... This study investigated the effect of thermal cycles on Cu-modified Ti64 thin-walled components deposited using the wire-arc directed energy deposition(wire-arc DED)process.For the samples before and after experiencing thermal cycles,it was found that both microstructures consisted of priorβ,grain boundaryα(GBα),and basketweave structures containingα+βlamellae.Thermal cycles realized the refinement ofαlaths,the coarsening of priorβgrains andβlaths,while the size and morphology of continuously distributed GBαremained unchanged.The residualβcontent was increased after thermal cycles.Compared with the heat-treated sample with nanoscale Ti2Cu formed,short residence time in high temperature caused by the rapid cooling rate of thermal cycles restricted Ti2Cu formation.No formation of brittle Ti2Cu means that only grain refinement strengthening and solid-solution strengthening matter.The yield strength increased from 809.9 to 910.85 MPa(12.46%increase).Among them,the main contribution from solid solution strengthening(~51 MPa)was due to the elemental redistribution effect betweenαandβphases caused by thermal cycles through quantitative analysis.The ultimate tensile strength increased from 918.5 to 974.22 MPa(6.1%increase),while fracture elongation increased from 6.78 to 10.66%(57.23%increase).Grain refinement ofαlaths,the promotedα′martensite decomposition,decreased aspect ratio,decreased Schmid factor,and local misorientation change ofαlaths are the main factors in improved ductility.Additionally,although the fracture modes of the samples in the top and middle regions are both brittle-ductile mixed fracture mode,the thermal cycles still contributed to an improvement in tensile ductility. 展开更多
关键词 Wire-arc directed energy deposition(wire-arc DED) Ti64-1.2Cu thin wall Thermal cycles Microstructure variation Mechanical properties
原文传递
Advances in additively manufactured titanium alloys by powder bed fusion and directed energy deposition:Microstructure,defects,and mechanical behavior
15
作者 H.Y.Ma J.C.Wang +4 位作者 P.Qin Y.J.Liu L.Y.Chen L.Q.Wang L.C.Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS 2024年第16期32-62,共31页
Ti and its alloys have been broadly adopted across various industries owing to their outstanding proper-ties,such as high strength-to-weight ratio,excellent fatigue performance,exceptional corrosion resistance and so ... Ti and its alloys have been broadly adopted across various industries owing to their outstanding proper-ties,such as high strength-to-weight ratio,excellent fatigue performance,exceptional corrosion resistance and so on.Additive manufacturing(AM)is a complement to,rather than a replacement for,traditional manufacturing processes.It enhances flexibility in fabricating complex components and resolves machin-ing challenges,resulting in reduced lead times for custom designs.However,owing to distinctions among various AM technologies,Ti alloys fabricated by different AM methods usually present differences in mi-crostructure and defects,which can significantly influence the mechanical performance of built parts.Therefore,having an in-depth knowledge of the scientific aspects of fabrication and material properties is crucial to achieving high-performance Ti alloys through different AM methods.This article reviews the mechanical properties of Ti alloys fabricated by two mainstream powder-type AM techniques:powder bed fusion(PBF)and directed energy deposition(DED).The review examines several key aspects,en-compassing phase formation,grain size and morphology,and defects,and provides an in-depth analysis of their influence on the mechanical behaviors of Ti alloys.This review can aid researchers and engi-neers in selecting appropriate PBF or DED methods and optimizing their process parameters to fabricate high-performance Ti alloys for a wide range of industrial applications. 展开更多
关键词 Powder bed fusion Directed energy deposition Titanium alloys Phase transformation Defects Mechanical property
原文传递
Influence of Scanning Patterns on Mechanical Behavior and Distortion in Laser Directed Energy Deposition
16
作者 Qi Wang Bingjie Xiao Shaopeng Zheng 《Journal of Applied Mathematics and Physics》 2024年第11期3842-3859,共18页
Laser Directed Energy Deposition (LDED) marks a critical advance in intelligent manufacturing, enabling efficient near-net shape production of metal parts. This method is especially beneficial for aerospace and defens... Laser Directed Energy Deposition (LDED) marks a critical advance in intelligent manufacturing, enabling efficient near-net shape production of metal parts. This method is especially beneficial for aerospace and defense applications that require high precision. However, issues such as deformation and heat accumulation during production still affect the quality of the final products, necessitating further optimization of process parameters. This paper studies the effects of three deposition strategies on 316L stainless steel parts using LDED. The three strategies based on unidirectional scanning (US), zigzag scanning (ZS), and square spiral scanning (SS) are investigated by solid samples and samples with a central hole. The surface smoothness, defects, and mechanical properties of 316L samples manufactured with the above strategies are discussed by means of surface topography tests and metallographic characterization. Experimental results indicate that the zigzag scanning strategy yielded better results for solid components, and the square spiral scanning strategy is suitable for samples with a central hole. 展开更多
关键词 Directed Energy deposition deposition Strategy 316L Stainless Steel Microstructure Microhardness Surface Smoothness
下载PDF
Effects of heat treatment on microstructure and mechanical properties of Inconel 625 alloy fabricated by wire arc additive manufacturing process 被引量:16
17
作者 Abolfazl SAFARZADE Mahmood SHARIFITABAR Mahdi SHAFIEE AFARANI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第11期3016-3030,共15页
The microstructure and mechanical properties of Inconel 625 alloy fabricated by wire arc additive manufacturing process were evaluated under as-prepared and heat-treated conditions.A dendritic Ni-based solid solution ... The microstructure and mechanical properties of Inconel 625 alloy fabricated by wire arc additive manufacturing process were evaluated under as-prepared and heat-treated conditions.A dendritic Ni-based solid solution phase along with(Nb,Ti)C carbide,Laves,and δ-Ni3Nb secondary phases were developed in the microstructure of the as-prepared alloy.Solution heat treatment led to the dissolution of Laves and Ni3Nb phases.In addition,dendrites were replaced with large columnar grains.Aging heat treatment resulted in the formation of grain boundary M23C6 carbide and nanometric γ''precipitates.Hardness,yield and tensile strengths,as well as elongation of the as-prepared part,were close to those of the cast alloy and its fracture occurred in a transgranular ductile mode.Solution heat treatment improved hardness and yield strength and declined the elongation,but it did not have a considerable impact on the tensile strength.Furthermore,aging heat treatment caused the tensile properties to deteriorate and changed the fracture to a mixture of transgranular ductile and intergranular brittle mode. 展开更多
关键词 nickel alloys additive manufacturing direct energy deposition heat treatment microstructure
下载PDF
Underwater Laser Welding/Cladding for High-performance Repair of Marine Metal Materials:A Review 被引量:8
18
作者 Guifang Sun Zhandong Wang +3 位作者 Yi Lu Mingzhi Chen Kun Yang Zhonghua Ni 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第1期31-49,共19页
With the rapid developments of marine resource exploitation,mounts of marine engineering equipment are settled on the ocean.When it is not possible to move the damaged equipment into a dry dock,welding operations must... With the rapid developments of marine resource exploitation,mounts of marine engineering equipment are settled on the ocean.When it is not possible to move the damaged equipment into a dry dock,welding operations must be performed in underwater environments.The underwater laser welding/cladding technique is a promising and advanced technique which could be widely applied to the maintenance of the damaged equipment.The present review paper aims to present a critical analysis and engineering overview of the underwater laser welding/cladding technique.First,we elaborated recent advances and key issues of drainage nozzles all over the world.Next,we presented the underwater laser processing and microstructural-mechanical behavior of repaired marine materials.Then,the newly developed powder-feeding based and wire-feeding based underwater laser direct metal deposition techniques were reviewed.The differences between the convection,conduction,and the metallurgical kinetics in the melt pools during underwater laser direct metal deposition and in-air laser direct metal deposition were illustrated.After that,several challenges that need to be overcame to achieve the full potential of the underwater laser welding/cladding technique are proposed.Finally,suggestions for future directions to aid the development of underwater laser welding/cladding technology and underwater metallurgical theory are provided.The present review will not only enrich the knowledge in the underwater repair technology,but also provide important guidance for the potential applications of the technology on the marine engineering. 展开更多
关键词 Underwater laser welding Underwater laser direct metal deposition Drainage nozzle Marine metal materials Mechanical property Diffusible hydrogen
下载PDF
Microstructure and wear behavior of IC10 directionally solidified superalloy repaired by directed energy deposition 被引量:2
19
作者 Guan Liu Dong Du +3 位作者 Kaiming Wang Ze Pu Dongqi Zhang Baohua Chang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第34期71-78,共8页
Directed energy deposition has been used to repair superalloy components in aero engines and gas turbines.However,the microstructure and properties are generally inhomogeneous in components because of the different pr... Directed energy deposition has been used to repair superalloy components in aero engines and gas turbines.However,the microstructure and properties are generally inhomogeneous in components because of the different processing histories.Here,the microstructures and wear behavior of different zones(substrate,HAZ,and deposit)are investigated for the IC10 directionally solidified superalloy repaired by the directed energy deposition process.It is found that the microstructure of the deposited layers is strongly textured with a<001>-fiber texture in the building direction,and the texture intensity is continuously increased along the building direction.Two kinds ofγ’phase(primary and secondaryγ’phase)can be found in the heat-affected zone(HAZ),and the average size of primaryγ’phase is smaller than that in the substrate due to liquation.In the deposit layers,the size ofγ’phase is much smaller than those in the substrate and the primaryγ’phase of HAZ;both size and the fraction of theγ’phase decreases with the increase of building height.The wear rate of the substrate is the smallest,indicating the best wear resistance;while the wear rate of HAZ is the largest,indicating the worst wear resistance in the repaired sample.The wear rates in the deposit layers increase from the bottom to the top zones,showing a decreasing wear resistance.Abrasive wear is found to be the dominant wear mechanism of the repaired alloy,and the resistance to which is closely related to the fraction ofγ’phase in the microstructure.The understanding of the influence of microstructure on wear resistance allows for a more informed application of inhomogeneous superalloy components repaired by directed energy deposition in industry. 展开更多
关键词 Directed energy deposition directionally solidified superalloy MICROSTRUCTURE Wear behavior Repairing
原文传递
Microstructure and Mechanical Properties of Nickel‑Aluminum Bronze Coating on 17‑4PH Stainless Steel by Laser Cladding
20
作者 Lu Zhao Baorui Du +3 位作者 Jun Yao Haitao Chen Ruochen Ding Kailun Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第6期403-414,共12页
Bimetallic copper-steel composite could be an effective structural material to improve the performance of traditional nickel-aluminum bronze(NAB)ship propeller due to its high structural strength and corrosion resista... Bimetallic copper-steel composite could be an effective structural material to improve the performance of traditional nickel-aluminum bronze(NAB)ship propeller due to its high structural strength and corrosion resistance.In this work,the defect-free NAB coatings has been successfully fabricated by laser direct depositing technique on the 17-4PH stainless steel substrate.The phase constitution,microstructure characteristics and hardness properties were investigated in details.The XRD results showed that the coatings mainly consisted ofα-Cu,Fe and intermetallicκphases despite the diffraction peaks shifted more than 0.5°,which may due to the influence of the Ni,Fe and Al atoms dissolved into Cu-matrix.The microstructures of the coatings were affected significantly by laser energy density according to SEM and EDS results.The top region of the coating was more undercooled during solidification,therefore the grains at this region was much finer than that at the bottom region.The higher energy input would lead to coarser grains.Fe-rich dendrites and spherical particles were found in the Cu matrix,which could be a result of liquid separation.The hardness of the coating is in the range of 204 HV0.2–266 HV0.2 which is higher than traditional as-cast NAB.The uneven distribution of Fe-rich phases as well as the hardκphases could be the main reasons for the fluctuations of the hardness value.Tensile fracture occurred at bronze side,not at transition zone,which shows there is a good interfacial bonding between the two metals produced by laser cladding. 展开更多
关键词 Laser direct depositing Nickel-aluminum bronze Microstructure HARDNESS TENSILE Liquid separation
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部