期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Deposition and Magnetic Properties of Fe_3O_4/Fe/Fe_3O_4 Tri-layer Films 被引量:2
1
作者 T.S.Chin and W.C.Yang (Department of Materials Science and Engineering, Tsing Hua University 101, Section 2, Kuang-Fu Rd., Hsinchu, 30043, Taiwan-China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第2期191-194,共4页
The Fe_3O_4/Fe/Fe_3O_4 (MIM) tri-layer films (200 nm/12-93 nm/200 um) were prepared on Si(100) by DC-magnetron reactive-sputtering followed by air- or vacuum-annealing at 280-400℃ for 1.5 h, respectively. Magnetic pr... The Fe_3O_4/Fe/Fe_3O_4 (MIM) tri-layer films (200 nm/12-93 nm/200 um) were prepared on Si(100) by DC-magnetron reactive-sputtering followed by air- or vacuum-annealing at 280-400℃ for 1.5 h, respectively. Magnetic properties and phases under different sandwich and annealing conditions were studied. In MIM structure, the incorporation of the interlayer iron does increase the magnetization measured under 8 kOe (M_8K), but reduce coercivity (H_c). The H_c of asdeposited films decreases from 354 Oe to 74 Oe; while M_8K increases from 254 to 392 emu/cc. By annealing in air, the whole MIM tri-layer film becomes γ-F_e2O_3, H_c is about 550 O_e and M_8K is around 250 emu/cc. The coercivity mechanism of as-deposited and annealed MIM trilayer films belongs to domain-wall pinning type. δM plots show that when the interlayer Fe thickness is 12 um, the Fe and Fe_3O_4 layers are decoupled in the as-deposited and annealed states; while it is coupled in the as deposited state when the Fe thickness increases to 23 um. Vacuum annealing of the MIM films leads to increase in both coercivity and magnetization, and to enhance the exchange coupling between layers. 展开更多
关键词 FE deposition and Magnetic Properties of Fe3O4/Fe/Fe3O4 Tri-layer Films
下载PDF
Field Emission Properties of Nano-DLC Films Prepared on Cu Substrates by Pulsed Laser Deposition
2
作者 彭丽萍 LI Xiangkun +2 位作者 FAN Long WANG Xuemin 吴卫东 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期326-330,共5页
Nano-diamond like carbon(DLC) thin films were prepared on fused silica and Cu substrates by the pulsed-laser deposition technique with different laser intensities. Step-measurement, atomic force microscope(AFM), U... Nano-diamond like carbon(DLC) thin films were prepared on fused silica and Cu substrates by the pulsed-laser deposition technique with different laser intensities. Step-measurement, atomic force microscope(AFM), UV-VIS-NIR transmittance spectroscopy and Raman spectroscopy were used to characterize the films. It was shown that the deposition rate increases with the laser intensity, and the films prepared under different laser intensities show different transparency. Raman measurement showed that the content of sp^3 of the Nano-DLC thin films decreases with the laser intensity. The field emission properties of the Nano-DLC thin films on Cu substrates were studied by the conventional diode method, which showed that the turn-on field increases and the current density decreases with sp^3 content in the films. A lower turn-on field of 6 V/um and a higher current density of 1 uA/cm^2 were obtained for Nano-DLC thin films on Cu substrate. 展开更多
关键词 nano-DLC thin films pulsed-laser deposition field emission properties
下载PDF
Theoretical Investigation of Influence of Mechanical Stress on Magnetic Properties of Ferromagnetic/Antiferromagnetic Bilayers Deposited on Flexible Substrates 被引量:1
3
作者 白宇浩 王霞 +1 位作者 穆林平 许小红 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第8期118-122,共5页
Effect of mechanical stress on magnetic properties of an exchange-biased ferromagnetic/antiferromagnetic bilayer deposited on a flexible substrate is investigated. The hysteresis loops with different magnitudes and or... Effect of mechanical stress on magnetic properties of an exchange-biased ferromagnetic/antiferromagnetic bilayer deposited on a flexible substrate is investigated. The hysteresis loops with different magnitudes and orientations of the stress can be classified into three types. The corresponding physical conditions for each type of the loop are deduced based on the principle of minimal energy. The equation of the critical stress is derived, which can judge whether the loops show hysteresis or not. Numerical calculations suggest that except for the magnitude of the mechanical stress, the relative orientation of the stress is also an important factor to tune the exchange bias effect. 展开更多
关键词 of for Theoretical Investigation of Influence of Mechanical Stress on Magnetic Properties of Ferromagnetic/Antiferromagnetic Bilayers Deposited on Flexible Substrates is been on from that into
下载PDF
Effects of Substrate Temperature on Properties of Transparent Conductive Ta-Doped TiO_2 Films Deposited by Radio-Frequency Magnetron Sputtering
4
作者 刘洋 彭茜 +1 位作者 周仲品 杨光 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第4期113-117,共5页
Ta-doped titanium dioxide films are deposited on fused quartz substrates using the rf magnetron sputtering technique at different substrate temperatures. After post-annealing at 550℃ in a vacuum, all the films are cr... Ta-doped titanium dioxide films are deposited on fused quartz substrates using the rf magnetron sputtering technique at different substrate temperatures. After post-annealing at 550℃ in a vacuum, all the films are crystallized into the polycrystalline anatase TiO2 structure. The effects of substrate temperature from room temperature up to 350℃ on the structure, morphology, and photoelectric properties of Ta-doped titanium dioxide films are analyzed. The average transmittance in the visible region(400-800 nm) of all films is more than 73%.The resistivity decreases firstly and then increases moderately with the increasing substrate temperature. The polycrystalline film deposited at 150℃ exhibits a lowest resistivity of 7.7 × 10^-4Ω·cm with the highest carrier density of 1.1×10^21 cm^-3 and the Hall mobility of 7.4 cm^2·V^-1s^-1. 展开更多
关键词 TA Effects of Substrate Temperature on Properties of Transparent Conductive Ta-Doped TiO2 Films Deposited by Radio-Frequency Magnetron Sputtering TIO
下载PDF
Optoelectronic properties and Seebeck coefficient in SnSe thin films 被引量:2
5
作者 K S Urmila T A Namitha +2 位作者 J Rajani R R Philip B Pradeep 《Journal of Semiconductors》 EI CAS CSCD 2016年第9期41-46,共6页
SnSe thin films of thickness 180 nm have been deposited on glass substrates by reactive evaporation at an optimized substrate temperature of 523 ± 5 K and pressure of 10^(-5) mbar.The as-prepared SnSe thin film... SnSe thin films of thickness 180 nm have been deposited on glass substrates by reactive evaporation at an optimized substrate temperature of 523 ± 5 K and pressure of 10^(-5) mbar.The as-prepared SnSe thin films are characterized for their structural,optical and electrical properties by various experimental techniques.The p-type conductivity,near-optimum direct band gap,high absorption coefficient and good photosensitivity of the SnSe thin film indicate its suitability for photovoltaic applications.The optical constants,loss factor,quality factor and optical conductivity of the films are evaluated.The results of Hall and thermoelectric power measurements are correlated to determine the density of states,Fermi energy and effective mass of carriers and are obtained as 2.8×10^(17)cm^(-3),0.03 eV and 0.05m_0 respectively.The high Seebeck coefficient ≈ 7863 μV/K,reasonably good power factor ≈7.2×10^(-4) W/(m·K^2) and thermoelectric figure of merit ≈1.2 observed at 42 K suggests that,on further work,the prepared SnSe thin films can also be considered as a possible candidate for cryogenic thermoelectric applications. 展开更多
关键词 thin films vacuum deposition optoelectronic properties Seebeck coefficient
原文传递
Influence of α/β interface phase on the tensile properties of laser cladding deposited Ti–6Al–4V titanium alloy 被引量:16
6
作者 Zhuang Zhao Jing Chen +2 位作者 Shuai Guo Hua Tan Weidong Huang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第7期675-681,共7页
Laser cladding deposited Ti-6Al-4V titanium alloy universally shows more complex microstructures,each of which has significant effect on mechanical properties. Of particular α/β interface phase has been observed in ... Laser cladding deposited Ti-6Al-4V titanium alloy universally shows more complex microstructures,each of which has significant effect on mechanical properties. Of particular α/β interface phase has been observed in this paper under certain conditions. It demonstrates that the influence of the α/β interface phase on the tensile properties is closely associated with dislocations and twin substructure through comparison experiments. The results show that the α/β interface phase hinders dislocation motion and decreases effective slip length. In addition, the twin substructure has been activated in the α/β interface phase during tensile process and has acted somehow like grain boundaries. Therefore, the strength and the work-hardening rate of the laser cladding deposited Ti-6Al-4V titanium alloy have been significantly improved due to the dynamic Hall-Petch effect. Besides, the α/β interface phase leads to more uniform dislocations distribution, which implies that relative lower local concentrated stress will be produced along the α/β interface phase or colony boundary after the same amount of plastic deformation. Moreover,the twinning-induced plasticity effects in the α/β interface phase further increase the plastic deformation capacity. These results in higher elongation for the laser cladding deposited Ti-6Al-4V titanium alloy.It can be concluded that the current work suggests an effective method to simultaneously improve the strength and plasticity of laser cladding deposited Ti-6Al-4V titanium alloy based on the α/β interface phase. 展开更多
关键词 Ti-6Al-4V Laser cladding deposition α/β Interface phase Dislocation Twins Tensile properties
原文传递
Microstructure Evolution and Mechanical Properties of Spray-deposited Al-21.47Si-4.73Fe-2.5Cu-0.9Mg Alloy 被引量:1
7
作者 Yan-dong JIA Fu-yang CAO +3 位作者 Pan MA Jing-shun LIU Jian-fei SUN Gang WANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第1期14-18,共5页
Al-Si-Fe-Cu-Mg alloy was prepared by spray deposition and was further processed by hot extrusion as well as T6heat-treatment.The results indicate that the microstructure of the deposited alloy is composed of primary S... Al-Si-Fe-Cu-Mg alloy was prepared by spray deposition and was further processed by hot extrusion as well as T6heat-treatment.The results indicate that the microstructure of the deposited alloy is composed of primary Si particles with average size of less than 5μm,α-Al,Al_2CuMg,β-Al_5FeSi andδ-Al_4FeSi_2(rectangular shape),and no eutectic silicon is found due to the special solidification behavior.The age hardening curves reveal two peaks.The uniform ultimate tensile strength(UTS)and the elongation of the peak-aged Al-Si-Fe-Cu-Mg alloy are 468.3 MPa,0.61% at 298 Kand 267.4MPa,6.42% at 573 K,respectively.The fracture surfaces display brittle fracture morphology at 298 K,whereas it varies to mixture of brittle and ductile failure with increasing the temperature. 展开更多
关键词 spray deposition hypereutectic Al-Si alloy microstructure aging mechanical property
原文传递
Structure and optoelectrical properties of transparent conductive MGZO films deposited by magnetron sputtering
8
作者 钟志有 康淮 +2 位作者 陆轴 龙浩 顾锦华 《Optoelectronics Letters》 EI 2018年第1期25-29,共5页
The transparent conductive Mg-Ga co-doped Zn O(MGZO) films were prepared by radio-frequency(RF) magnetron sputtering. The influence of substrate temperature on the structural and optoelectrical properties of the films... The transparent conductive Mg-Ga co-doped Zn O(MGZO) films were prepared by radio-frequency(RF) magnetron sputtering. The influence of substrate temperature on the structural and optoelectrical properties of the films is studied. The results show that all the films possess a preferential orientation along the(002) plane. With the increase of substrate temperature, the structure and optoelectrical properties of the films can be changed. When substrate temperature is 300 ℃, the deposited film exhibits the best crystalline quality and optoelectrical properties, with the minimum micro strain of 1.09×10^(-3), the highest average visible transmittance of 82.42%, the lowest resistivity of 1.62×10^(-3) Ω·cm and the highest figure of merit of 3.18×10~3 Ω^(-1)·cm^(-1). The optical bandgaps of the films are observed to be in the range of 3.342—3.545 eV. The refractive index dispersion curves obey the Sellmeier's dispersion model. 展开更多
关键词 AS Structure and optoelectrical properties of transparent conductive MGZO films deposited by magnetron sputtering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部