This paper deals with a simulated test of biogenic mineralization made with a blue-green alga species,Spirulina platensix. The data in the experiment were recorded by a computerized surveying system. The influ-ence of...This paper deals with a simulated test of biogenic mineralization made with a blue-green alga species,Spirulina platensix. The data in the experiment were recorded by a computerized surveying system. The influ-ence of algae on the accumulation of phosphorus by changing their microenvironment to promote the forma-tion and deposition of phosphate was studied. The results show that the pH value of cultural liquor rose up to 10 and the redox potential (Eh) may dropby 100-200 mV during the algal logarithmic growth stage, and the cultrual liquor was changed into a mediumwith a weakly reducing condition. At the end of the logarithmic growth stage white deposits of Na_2Ca(CO_3)_2·5H_2O and Ca_2Mg (PO_4)_2·2H_2O were formed on the floor of cultural containers. The test presented a wduableevidence for the theory of biogenic mineralization.展开更多
Methods of exploitation drainage, which is presently applied in polish hard coal mines in Upper Silesian Coal Basin(Poland), are not effective enough, high risk of methane hazard can be observed, and production capaci...Methods of exploitation drainage, which is presently applied in polish hard coal mines in Upper Silesian Coal Basin(Poland), are not effective enough, high risk of methane hazard can be observed, and production capacity of the mining plant is not fully used. Methane hazard, which may occur during planned coal exploitation, is presented in this paper. Following parameters are taken into consideration in the forecasts: coal extraction parameters, geological and mining conditions, deposit's methane saturation degree and impact of coal exploitation on the degasification coefficient of the seams, which are under the influence of relaxation zone. This paper presents the results of the analysis aiming to verify applicability of drainage ahead of mining of the coal seams by using surface directional wells. Based on the collected data(coal seams' structural maps, profiles of the exploratory wells, geological cross-sections), the lab tests of drilling cores and direct wells' tests, static model of the deposit was constructed and suitable grid of directional wells from the surface was designed. Comparison of forecasted methane emission volume between the two methods is investigated. The results indicated the necessity of performing appropriate deposit's stimulations in order to increase effectiveness of drainage ahead of mining.展开更多
For deposit body medium, the internal structural properties may be the controlling factors for the strength of the material and the mechanical response. Based on the results of soil-rock meso-statistics using digital ...For deposit body medium, the internal structural properties may be the controlling factors for the strength of the material and the mechanical response. Based on the results of soil-rock meso-statistics using digital imaging, a simulated annealing algorithm is adopted to expand the meso-structural features of deposit bodies in 3D. The construction of the 3D meso-structure of a deposit body is achieved, and then the particle flow analysis program PFC3 D is used to simulate the mechanical properties of the deposit body. It is shown that with a combination of the simulated annealing algorithm and the statistical feature functions, the randomness and heterogeneity of the rock distribution in the 3D inner structure of deposit body medium can be realized, and the reconstructed structural features of the deposit medium can match the features of the digital images well. The spatial utilizations and the compacting effects of the body-centered cubic, hexagonal close and face-centered packing models are high, so these structures can be applied in the simulations of the deposit structures. However, the shear features of the deposit medium vary depending on the different model constructive modes. Rocks, which are the backbone of the deposit, are the factors that determine the shear strength and deformation modulus of the deposit body. The modeling method proposed is useful for the construction of 3D meso-scope models from 2D meso-scope statistics and can be used for studying the mechanical properties of mixed media, such as deposit bodies.展开更多
Modelling of the agglomeration and deposition on a constricted tube collector of colloidal size particles immersed in a liquid is investigated using the discrete element method (DEM). The ability of this method to r...Modelling of the agglomeration and deposition on a constricted tube collector of colloidal size particles immersed in a liquid is investigated using the discrete element method (DEM). The ability of this method to represent surface interactions allows the simulation of agglomeration and deposition at the particle scale. The numerical model adopts a mechanistic approach to represent the forces involved in colloidal suspensions by including near-wall drag retardation, surface interaction and Brownian forces. The model is implemented using the commercially available DEM package EDEM 2.3~, so that results can be repli- cated in a standard and user-friendly framework. The effects of various particle-to-collector size ratios, inlet fluid flow-rates and particle concentrations are examined and it is found that deposition efficiency is strongly dependent on the inter-relation of these parameters. Particle deposition and re-suspension mechanisms have been identified and analyzed thanks to EDEM's post processing capability. One-way coupling with computational fluid dynamics (CFD) is considered and results are compared with a two- way coupling between EDEM 2.3 and FLUENT 12.1. It is found that two-way coupling requires circa 500% more time than one-way coupling for similar results.展开更多
Experiments carried out using a lung model with a single horizontal bifurcation under different steady inhalation conditions explored the orientation of depositing carbon fibers, and particle deposition frac- tions. T...Experiments carried out using a lung model with a single horizontal bifurcation under different steady inhalation conditions explored the orientation of depositing carbon fibers, and particle deposition frac- tions. The orientations of deposited fibers were obtained from micrographs. Specifically, the effects of the sedimentation parameter (γ), fiber length, and flow rate on orientations were analyzed. Our results indicate that gravitational effect on deposition cannot be neglected for 0.0228 〈 γ 〈 0.247. The absolute orientation angle of depositing fibers decreased linearly with increasing y for values 0.0228 〈 γ 〈 0.15. Correspondence between Stokes numbers and y suggests these characteristics can be used to estimate fiber deposition in the lower airways. Computer simulations with sphere-equivalent diameter models for the fibers explored deposition efficiency vs. Stokes number. Using the volume-equivalent diameter model, our experimental data for the horizontal bifurcation were replicated. Results for particle deposition using a lung model with a vertical bifurcation indicate that body position also affects deposition.展开更多
Introduction Niobium is extremely important in SRF cavities because of its superconducting properties.However,there are some intrinsic limits of Nb cavities that cannot meet the requirements of future accelerators.It ...Introduction Niobium is extremely important in SRF cavities because of its superconducting properties.However,there are some intrinsic limits of Nb cavities that cannot meet the requirements of future accelerators.It is therefore of utmost importance to look into materials offering SRF performances beyond niobium.Nb3Sn is the most promising material.In our work,the cathode target is cylindrical and rotatable,containing both Nb and Sn elements,which are simultaneously charged,aiming to explore the area ratios of the two elements required in the cathode target by simulation and experiments,respectively.This work will provide the basis for the subsequent Nb3Sn cathode target fabrication.Simulations and experiments In the simulation,we calculated stoichiometric ratio and sputtering yield to obtain the area ratios of Nb and Sn.In the experiment,we calculated the rotation rate of the target,deposition thickness of films on substrates and deposition rate to obtain the area ratio of Nb and Sn.Conclusion In conclusion,we compared the simulation and experimental results and found that they are in good agreement.The simulation and experimental results also showed that the area ratio of Nb to Sn in the target is close to 9:1.These results lay the foundation for the subsequent Nb3Sn cathode target fabrication and multilayer deposition of Nb3Sn thin films.展开更多
文摘This paper deals with a simulated test of biogenic mineralization made with a blue-green alga species,Spirulina platensix. The data in the experiment were recorded by a computerized surveying system. The influ-ence of algae on the accumulation of phosphorus by changing their microenvironment to promote the forma-tion and deposition of phosphate was studied. The results show that the pH value of cultural liquor rose up to 10 and the redox potential (Eh) may dropby 100-200 mV during the algal logarithmic growth stage, and the cultrual liquor was changed into a mediumwith a weakly reducing condition. At the end of the logarithmic growth stage white deposits of Na_2Ca(CO_3)_2·5H_2O and Ca_2Mg (PO_4)_2·2H_2O were formed on the floor of cultural containers. The test presented a wduableevidence for the theory of biogenic mineralization.
文摘Methods of exploitation drainage, which is presently applied in polish hard coal mines in Upper Silesian Coal Basin(Poland), are not effective enough, high risk of methane hazard can be observed, and production capacity of the mining plant is not fully used. Methane hazard, which may occur during planned coal exploitation, is presented in this paper. Following parameters are taken into consideration in the forecasts: coal extraction parameters, geological and mining conditions, deposit's methane saturation degree and impact of coal exploitation on the degasification coefficient of the seams, which are under the influence of relaxation zone. This paper presents the results of the analysis aiming to verify applicability of drainage ahead of mining of the coal seams by using surface directional wells. Based on the collected data(coal seams' structural maps, profiles of the exploratory wells, geological cross-sections), the lab tests of drilling cores and direct wells' tests, static model of the deposit was constructed and suitable grid of directional wells from the surface was designed. Comparison of forecasted methane emission volume between the two methods is investigated. The results indicated the necessity of performing appropriate deposit's stimulations in order to increase effectiveness of drainage ahead of mining.
基金Projects(51309089,11202063)supported by the National Natural Science Foundation of ChinaProject(2013BAB06B01)supported by the National High Technology Research and Development Program of China+1 种基金Project(2015CB057903)supported by the National Basic Research Program of ChinaProject(BK20130846)supported by Natural Science Foundation of Jiangsu Province,China
文摘For deposit body medium, the internal structural properties may be the controlling factors for the strength of the material and the mechanical response. Based on the results of soil-rock meso-statistics using digital imaging, a simulated annealing algorithm is adopted to expand the meso-structural features of deposit bodies in 3D. The construction of the 3D meso-structure of a deposit body is achieved, and then the particle flow analysis program PFC3 D is used to simulate the mechanical properties of the deposit body. It is shown that with a combination of the simulated annealing algorithm and the statistical feature functions, the randomness and heterogeneity of the rock distribution in the 3D inner structure of deposit body medium can be realized, and the reconstructed structural features of the deposit medium can match the features of the digital images well. The spatial utilizations and the compacting effects of the body-centered cubic, hexagonal close and face-centered packing models are high, so these structures can be applied in the simulations of the deposit structures. However, the shear features of the deposit medium vary depending on the different model constructive modes. Rocks, which are the backbone of the deposit, are the factors that determine the shear strength and deformation modulus of the deposit body. The modeling method proposed is useful for the construction of 3D meso-scope models from 2D meso-scope statistics and can be used for studying the mechanical properties of mixed media, such as deposit bodies.
文摘Modelling of the agglomeration and deposition on a constricted tube collector of colloidal size particles immersed in a liquid is investigated using the discrete element method (DEM). The ability of this method to represent surface interactions allows the simulation of agglomeration and deposition at the particle scale. The numerical model adopts a mechanistic approach to represent the forces involved in colloidal suspensions by including near-wall drag retardation, surface interaction and Brownian forces. The model is implemented using the commercially available DEM package EDEM 2.3~, so that results can be repli- cated in a standard and user-friendly framework. The effects of various particle-to-collector size ratios, inlet fluid flow-rates and particle concentrations are examined and it is found that deposition efficiency is strongly dependent on the inter-relation of these parameters. Particle deposition and re-suspension mechanisms have been identified and analyzed thanks to EDEM's post processing capability. One-way coupling with computational fluid dynamics (CFD) is considered and results are compared with a two- way coupling between EDEM 2.3 and FLUENT 12.1. It is found that two-way coupling requires circa 500% more time than one-way coupling for similar results.
基金We acknowledge the financial support of the Foundation for the National Natural Science Foundation of China (No. 51176035), and Author of National Excellent Doctoral Dissertation of China (No. 201040). In addition, financial support was provided to Xiaole Chen under the Research and Innovation Project for College Gradua- tes of Jiangsu Province (CXZZ12_0099), the Fundamental Research Funds for the Central Universities, China Scholarship Council (No. 201306090085), and Scientific Research Foundation of Graduate School of Southeast University (No. YBJJ1209). The experience gained by Xiaole Chen as a CSC-supported Visiting Student in the Computational Multi-Physics Lab (MAE Dept., NC State University, Raleigh, USA) is also acknowledged. Table 3, Figs. 5 and 7 were provided by Josin Tom, based on his spring 2015 course-project report for MAE558. Professor Goodarz Ahmadi at Clarkson Univer- sity (Clarkson, USA) provided advice for our experimental set-up, and Professor Yong Lu at Southeast University provided guidance in programming the image-processing method.
文摘Experiments carried out using a lung model with a single horizontal bifurcation under different steady inhalation conditions explored the orientation of depositing carbon fibers, and particle deposition frac- tions. The orientations of deposited fibers were obtained from micrographs. Specifically, the effects of the sedimentation parameter (γ), fiber length, and flow rate on orientations were analyzed. Our results indicate that gravitational effect on deposition cannot be neglected for 0.0228 〈 γ 〈 0.247. The absolute orientation angle of depositing fibers decreased linearly with increasing y for values 0.0228 〈 γ 〈 0.15. Correspondence between Stokes numbers and y suggests these characteristics can be used to estimate fiber deposition in the lower airways. Computer simulations with sphere-equivalent diameter models for the fibers explored deposition efficiency vs. Stokes number. Using the volume-equivalent diameter model, our experimental data for the horizontal bifurcation were replicated. Results for particle deposition using a lung model with a vertical bifurcation indicate that body position also affects deposition.
文摘Introduction Niobium is extremely important in SRF cavities because of its superconducting properties.However,there are some intrinsic limits of Nb cavities that cannot meet the requirements of future accelerators.It is therefore of utmost importance to look into materials offering SRF performances beyond niobium.Nb3Sn is the most promising material.In our work,the cathode target is cylindrical and rotatable,containing both Nb and Sn elements,which are simultaneously charged,aiming to explore the area ratios of the two elements required in the cathode target by simulation and experiments,respectively.This work will provide the basis for the subsequent Nb3Sn cathode target fabrication.Simulations and experiments In the simulation,we calculated stoichiometric ratio and sputtering yield to obtain the area ratios of Nb and Sn.In the experiment,we calculated the rotation rate of the target,deposition thickness of films on substrates and deposition rate to obtain the area ratio of Nb and Sn.Conclusion In conclusion,we compared the simulation and experimental results and found that they are in good agreement.The simulation and experimental results also showed that the area ratio of Nb to Sn in the target is close to 9:1.These results lay the foundation for the subsequent Nb3Sn cathode target fabrication and multilayer deposition of Nb3Sn thin films.